Journal Home > Volume 17 , Issue 6

Zn metal anode suffers from dendrite issues and passive byproducts, which severely plagues the practical application of aqueous Zn metal batteries. Herein, a polyzwitterionic cross-linked double network hydrogel electrolyte composed of physical crosslinking (hyaluronic acid) and chemical crosslinking (synthetic zwitterionic monomer copolymerized with acrylamide) is introduced to overcome these obstacles. On the one hand, highly hydrophilic physical network provides an energy dissipation channel to buffer stress and builds a H2O-poor interface to avoid side reactions. On the other hand, the charged groups (sulfonic and imidazolyl) in chemical crosslinking structure build anion/cation transport channels to boost ions’ kinetics migration and regulate the typical solvent structure [Zn(H2O)6]2+ to R-SO3 [Zn(H2O)4]2+, with uniform electric field distribution and significant resistance to dendrites and parasitic reactions. Based on the above functions, the symmetric zinc cell exhibits superior cycle stability for more than 420 h at a high current density of 5 mA·cm−2, and Zn||MnO2 full cell has a reversible specific capacity of 150 mAh·g−1 after 1000 cycles at 2 C with this hydrogel electrolyte. Furthermore, the pouch cell delivers impressive flexibility and cyclability for energy-storage applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polyzwitterionic cross-linked double network hydrogel electrolyte enabling high-stable Zn anode

Show Author's information Mengyu Shi1,2Junlong Zhang1,2Guochuan Tang2Ben Wang3Sen Wang2Xiaoxian Ren1,2Guojie Li1,2( )Weihua Chen1,2( )Chuntai Liu1Changyu Shen1
State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
Research Institute of Interdisciplinary Science and School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China

Abstract

Zn metal anode suffers from dendrite issues and passive byproducts, which severely plagues the practical application of aqueous Zn metal batteries. Herein, a polyzwitterionic cross-linked double network hydrogel electrolyte composed of physical crosslinking (hyaluronic acid) and chemical crosslinking (synthetic zwitterionic monomer copolymerized with acrylamide) is introduced to overcome these obstacles. On the one hand, highly hydrophilic physical network provides an energy dissipation channel to buffer stress and builds a H2O-poor interface to avoid side reactions. On the other hand, the charged groups (sulfonic and imidazolyl) in chemical crosslinking structure build anion/cation transport channels to boost ions’ kinetics migration and regulate the typical solvent structure [Zn(H2O)6]2+ to R-SO3 [Zn(H2O)4]2+, with uniform electric field distribution and significant resistance to dendrites and parasitic reactions. Based on the above functions, the symmetric zinc cell exhibits superior cycle stability for more than 420 h at a high current density of 5 mA·cm−2, and Zn||MnO2 full cell has a reversible specific capacity of 150 mAh·g−1 after 1000 cycles at 2 C with this hydrogel electrolyte. Furthermore, the pouch cell delivers impressive flexibility and cyclability for energy-storage applications.

Keywords: Zn anode, dendrites, parasitic reactions, polyzwitterion, double network hydrogel electrolyte

References(59)

[1]

Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

[2]

Wang, Y. Y.; Wang, Z. J.; Pang, W. K.; Lie, W.; Yuwono, J. A.; Liang, G. M.; Liu, S. L.; D’Angelo, A. M.; Deng, J. J.; Fan, Y. M. et al. Solvent control of water O–H bonds for highly reversible zinc ion batteries. Nat. Commun. 2023, 14, 2720.

[3]

Pu, X. J.; Zhao, D.; Fu, C. L.; Chen, Z. X.; Cao, S. N.; Wang, C. S.; Cao, Y. L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem., Int. Ed. 2021, 60, 21310–21318.

[4]

Wang, F. F.; Zhang, J. P.; Lu, H. T.; Zhu, H. B.; Chen, Z. H.; Wang, L.; Yu, J. Y.; You, C. H.; Li, W. H.; Song, J. W. et al. Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat. Commun. 2023, 14, 4211.

[5]

Zhao, D.; Chen, S. S.; Lai, Y. Y.; Ding, M. Y.; Cao, Y. L.; Chen, Z. X. A stable “rocking-chair” zinc-ion battery boosted by low-strain Zn3V4(PO4)6 cathode. Nano Energy 2022, 100, 107520.

[6]

Han, D. L.; Cui, C. J.; Zhang, K. Y.; Wang, Z. X.; Gao, J. C.; Guo, Y.; Zhang, Z. C.; Wu, S. C.; Yin, L. C.; Weng, Z. et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 2022, 5, 205–213.

[7]

Yang, C. Y.; Xia, J. L.; Cui, C. Y.; Pollard, T. P.; Vatamanu, J.; Faraone, A.; Dura, J. A.; Tyagi, M.; Kattan, A.; Thimsen, E. et al. All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 2023, 6, 325–335.

[8]

Li, S. H.; Li, M. L.; Chi, X. W.; Yin, X.; Luo, Z. D.; Yu, J. H. High-stable aqueous zinc metal anodes enabled by an oriented ZnQ zeolite protective layer with facile ion migration kinetics. Acta Phys.—Chim. Sin. 2024, 40, 2309003.

[9]

Zhao, D.; Pu, X. J.; Tang, S. L.; Ding, M. Y.; Zeng, Y. B.; Cao, Y. L.; Chen, Z. X. δ-VOPO4 as a high-voltage cathode material for aqueous zinc-ion batteries. Chem. Sci. 2023, 14, 8206–8213

[10]

Yang, J. Z.; Yin, B. S.; Sun, Y.; Pan, H. G.; Sun, W. P.; Jia, B. H.; Zhang, S. W.; Ma, T. Y. Zinc anode for mild aqueous zinc-ion batteries: Challenges, strategies, and perspectives. Nano-Micro Lett. 2022, 14, 42.

[11]

Yi, Z. H.; Chen, G. Y.; Hou, F.; Wang, L. Q.; Liang, J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 2021, 11, 2003065.

[12]

Zhu, Y. H.; Liang, G. J.; Cui, X.; Liu, X. Q.; Zhong, H. X.; Zhi, C. Y.; Yang, Y. K. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 2024, 17, 369–385.

[13]

Wang, X. Y.; Li, W. J.; Han, C.; Liu, H. K.; Dou, S. X. Challenges and optimization strategies of the anode of aqueous zinc-ion battery. Energy Storage Sci. Technol. 2022, 11, 1211–1225.

[14]

Tao, F.; Feng, K. J.; Liu, Y.; Ren, J. Z.; Xiong, Y.; Li, C. B.; Ren, F. Z. Suppressing interfacial side reactions of zinc metal anode via isolation effect toward high-performance aqueous zinc-ion batteries. Nano Res. 2023, 16, 6789–6797.

[15]

Gao, Y.; Cao, Q. H.; Pu, J.; Zhao, X.; Fu, G. W.; Chen, J. P.; Wang, Y. X.; Guan, C. Stable Zn anodes with triple gradients. Adv. Mater. 2023, 35, 2207573.

[16]

Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.

[17]

Zeng, Y. X.; Pei, Z. H.; Guo, Y.; Luan, D. Y.; Gu, X. J.; Lou, X. W. Zincophilic interfacial manipulation against dendrite growth and side reactions for stable Zn metal anodes. Angew. Chem., Int. Ed. 2023, 62, e202312145.

[18]

Shi, W. C.; Liu, Y.; Zhang, B. M.; Li, Q.; Han, C. H.; Mai, L. Q. Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries. Energy Storage Sci. Technol. 2023, 12, 1589–1603.

[19]

Ge, J. M.; Zhang, Y. Y.; Xie, Z. K.; Xie, H. B.; Chen, W. H.; Lu, B. A. Tailored ZnF2/ZnS-rich interphase for reversible aqueous Zn batteries. Nano Res. 2023, 16, 4996–5005.

[20]

Jiang, H.; Tang, L. T.; Fu, Y. K.; Wang, S. T.; Sandstrom, S. K.; Scida, A. M.; Li, G. X.; Hoang, D.; Hong, J. J.; Chiu, N. C. et al. Chloride electrolyte enabled practical zinc metal battery with a near-unity coulombic efficiency. Nat. Sustain. 2023, 6, 806–815.

[21]

Zhao, Y. X.; Guo, S.; Chen, M. J.; Lu, B. A.; Zhang, X. T.; Liang, S. Q.; Zhou, J. Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries. Nat. Commun. 2023, 14, 7080.

[22]
Lei, S. Y.; Feng, J. X.; Chen, Y. C.; Zheng, D.; Liu, W. X.; Shi, W. H.; Wu, F. F.; Cao, X. H. Advance in reversible Zn anodes promoted by 2D materials. Rare Met., in press, https://doi.org/10.1007/s12598-023-02478-8.
[23]

Zhang, Q.; Ma, Y. L.; Lu, Y.; Zhou, X. Z.; Lin, L.; Li, L.; Yan, Z. H.; Zhao, Q.; Zhang, K.; Chen, J. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem., Int. Ed. 2021, 60, 23357–23364.

[24]

Yang, X. Z.; Li, C.; Sun, Z. T.; Yang, S.; Shi, Z. X.; Huang, R.; Liu, B. Z.; Li, S.; Wu, Y. H.; Wang, M. L. et al. Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 2021, 33, 2105951.

[25]

Cao, Y. F.; Tang, X. H.; Li, L. G.; Tu, H. F.; Hu, Y. Z.; Yu, Y. Y.; Cheng, S.; Lin, H. Z.; Zhang, L. W.; Di, J. T. et al. Fast Zn2+ mobility enabled by sucrose modified Zn2+ solvation structure for dendrite-free aqueous zinc battery. Nano Res. 2023, 16, 3839–3846.

[26]

Tian, C.; Wang, J. L.; Sun, R. X.; Ali, T.; Wang, H. F.; Xie, B. B.; Zhong, Y. J.; Hu, Y. Improved interfacial ion migration and deposition through the chain-liquid synergistic effect by a carboxylated hydrogel electrolyte for stable zinc metal anodes. Angew. Chem., Int. Ed. 2023, 62, e202310970.

[27]

Cui, J. W.; Tao, Z. R.; Wu, J. Y.; Ma, S. S.; Yang, Y. Y.; Zhang, J. Y. A stable triazole-based covalent gel for long-term cycling Zn anode in zinc-ion batteries. Small 2023, 19, 2304640.

[28]

Fu, C. Y.; Wang, Y. P.; Lu, C. G.; Zhou, S.; He, Q.; Hu, Y. Z.; Feng, M. Y.; Wan, Y. L.; Lin, J. D.; Zhang, Y. F. et al. Modulation of hydrogel electrolyte enabling stable zinc metal anode. Energy Storage Mater. 2022, 51, 588–598.

[29]

Huang, S. W.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 2022, 34, 2110140.

[30]

Wang, X. L.; Wang, B.; Cheng, J. L. Multi-healable, mechanically durable double cross-linked polyacrylamide electrolyte incorporating hydrophobic interactions for dendrite-free flexible zinc-ion batteries. Adv. Funct. Mater. 2023, 33, 2304470.

[31]

Xia, H.; Xu, G.; Cao, X.; Miao, C. Y.; Zhang, H. N.; Chen, P. Y.; Zhou, Y.; Zhang, W.; Sun, Z. M. Single-ion-conducting hydrogel electrolytes based on slide-ring pseudo-polyrotaxane for ultralong-cycling flexible zinc-ion batteries. Adv. Mater. 2023, 35, 2301996.

[32]

Liu, Q.; Yu, Z. L.; Zhuang, Q. N.; Kim, J. K.; Kang, F. Y.; Zhang, B. Anti-fatigue hydrogel electrolyte for all-flexible Zn-ion batteries. Adv. Mater. 2023, 35, 2300498.

[33]

Nie, L.; Gao, R. H.; Zhang, M. T.; Zhu, Y. F.; Wu, X. R.; Lao, Z. J.; Zhou, G. M. Integration of porous high-loading electrode and gel polymer electrolyte for high-performance quasi-solid-state battery. Adv. Energy Mater. 2024, 14, 2302476.

[34]

Shi, Y.; Wang, R.; Bi, S. S.; Yang, M.; Liu, L. L.; Niu, Z. Q. An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at −70 °C. Adv. Funct. Mater. 2023, 33, 2214546.

[35]

Song, S. W.; Kim, H.; Shin, S.; Jang, S.; Bae, J. H.; Pang, C.; Choi, J.; Yoon, K. R. Hierarchically porous hydrogel electrolyte prepared from interpenetrating polymer networks for flexible Zn-air batteries. Energy Storage Mater. 2023, 60, 102802.

[36]

Yan, Y. C.; Duan, S. D.; Liu, B.; Wu, S. W.; Alsaid, Y.; Yao, B. W.; Nandi, S.; Du, Y. J.; Wang, T. W.; Li, Y. Z. et al. Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 2023, 35, 2211673.

[37]

Huang, S.; Wan, F.; Bi, S. S.; Zhu, J. C.; Niu, Z. Q.; Chen, J. A self-healing integrated all-in-one zinc-ion battery. Angew. Chem., Int. Ed. 2019, 131, 4357–4361.

[38]

Wang, Z.; Heasman, P.; Rostami, J.; Benselfelt, T.; Linares, M.; Li, H. L.; Iakunkov, A.; Sellman, F.; Östmans, R.; Hamedi, M. M. et al. Dynamic networks of cellulose nanofibrils enable highly conductive and strong polymer gel electrolytes for lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2212806.

[39]

Yang, J. L.; Li, J.; Zhao, J. W.; Liu, K.; Yang, P. H.; Fan, H. J. Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 2022, 34, 2202382.

[40]

Meng, Z.; Jiao, Y. C.; Wu, P. Y. Alleviating side reactions on Zn anodes for aqueous batteries by a cell membrane derived phosphorylcholine zwitterionic protective layer. Angew. Chem., Int. Ed. 2023, 62, e202307271.

[41]

Yu, H. M.; Chen, D. P.; Ni, X. Y.; Qing, P.; Yan, C. S.; Wei, W. F.; Ma, J. M.; Ji, X. B.; Chen, Y. J.; Chen, L. B. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energy Environ. Sci. 2023, 16, 2684–2695.

[42]

Leng, K. T.; Li, G. J.; Guo, J. J.; Zhang, X. Y.; Wang, A. X.; Liu, X. J.; Luo, J. Y. A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv. Funct. Mater. 2020, 30, 2001317.

[43]

Mo, F. N.; Chen, Z.; Liang, G. J.; Wang, D. H.; Zhao, Y. W.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 2020, 10, 2000035.

[44]
Cui, Y.; Chen, W. P.; Xin, W. W.; Ling, H. Y.; Hu, Y. H.; Zhang, Z. H.; He, X. F.; Zhao, Y.; Kong, X. Y.; Wen, L. P. et al. Gradient quasi-solid electrolyte enables selective and fast ion transport for robust aqueous zinc-ion batteries. Adv. Mater., in press, https://doi.org/10.1002/adma.202308639.
[45]

Guo, Y.; Cai, W. L.; Lin, Y.; Zhang, Y. Y.; Luo, S.; Huang, K. X.; Wu, H.; Zhang, Y. An ion redistributor enabled by cost-effective weighing paper interlayer for dendrite free aqueous zinc-ion battery. Energy Storage Mater. 2022, 50, 580–588.

[46]

Kim, S.; Heo, J.; Kim, R.; Lee, J. H.; Seo, J.; Yoon, S.; Lee, H.; Kim, S. J.; Kim, H. T. Electrokinetic-driven fast ion delivery for reversible aqueous zinc metal batteries with high capacity. Small 2021, 17, 2008059.

[47]

Li, J. W.; Zhou, S.; Chen, Y. N.; Meng, X. Y.; Azizi, A.; He, Q.; Li, H.; Chen, L.; Han, C.; Pan, A. Q. Self-smoothing deposition behavior enabled by beneficial potential compensating for highly reversible Zn-metal anodes. Adv. Funct. Mater. 2023, 33, 2307201.

[48]
Liu, Z. P.; Guo, Z. K.; Fan, L. S.; Zhao, C. Y.; Chen, A. S.; Wang, M.; Li, M.; Lu, X. Y.; Zhang, J. C.; Zhang, Y. et al. Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries. Adv. Mater., in press, https://doi.org/10.1002/adma.202305988.
[49]

Wang, H. R.; Zhou, A. B.; Hu, X.; Hu, Z. Q.; Zhang, F. L.; Huang, Y. X.; Li, L.; Wu, F.; Chen, R. J. Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS Nano 2023, 17, 11946–11956.

[50]

Yan, H. B.; Li, S. M.; Xu, H. F.; Chen, H.; Yang, S. B.; Li, B. Triggering Zn2+ unsaturated hydration structure via hydrated salt electrolyte for high voltage and cycling stable rechargeable aqueous Zn battery. Adv. Energy Mater. 2022, 12, 2201599.

[51]

Dong, D. Y.; Tsao, C.; Hung, H. C.; Yao, F. L.; Tang, C. J.; Niu, L. Q.; Ma, J. R.; Macarthur, J.; Sinclair, A.; Wu, K. et al. High-strength and fibrous capsule-resistant zwitterionic elastomers. Sci. Adv. 2021, 7, eabc5442.

[52]

Li, G. R.; Lu, F.; Dou, X. Y.; Wang, X.; Luo, D.; Sun, H.; Yu, A. P.; Chen, Z. W. Polysulfide regulation by the zwitterionic barrier toward durable lithium-sulfur batteries. J. Am. Chem. Soc. 2020, 142, 3583–3592.

[53]

Li, G. J.; Zhao, Z. H.; Zhang, S. L.; Sun, L.; Li, M. N.; Yuwono, J. A.; Mao, J. F.; Hao, J. N.; Vongsvivut, J.; Xing, L. D. et al. A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 2023, 14, 6526.

[54]

Cai, C. C.; Wen, C. Y.; Zhao, W. Q.; Tian, S.; Long, Y.; Zhang, X. Y.; Sui, X. J.; Zhang, L.; Yang, J. Environment-resistant organohydrogel-based sensor enables highly sensitive strain, temperature, and humidity responses. ACS Appl. Mater. Interfaces 2022, 14, 23692–23700.

[55]

Li, X. L.; Yuan, L. B.; Liu, R.; He, H. N.; Hao, J. N.; Lu, Y.; Wang, Y. M.; Liang, G. M.; Yuan, G. H.; Guo, Z. P. Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors. Adv. Energy Mater. 2021, 11, 2003010.

[56]

He, Q.; Fang, G. Z.; Chang, Z.; Zhang, Y. F.; Zhou, S.; Zhou, M.; Chai, S. M.; Zhong, Y.; Cao, G. Z.; Liang, S. Q. et al. Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction. Nano-Micro Lett. 2022, 14, 93.

[57]

Peng, M. K.; Wang, L.; Li, L. B.; Tang, X. N.; Huang, B. Y.; Hu, T.; Yuan, K.; Chen, Y. W. Manipulating the interlayer spacing of 3D Mxenes with improved stability and zinc-ion storage capability. Adv. Funct. Mater. 2022, 32, 2109524.

[58]

Fu, Q. J.; Hao, S. W.; Meng, L.; Xu, F.; Yang, J. Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability. ACS Nano 2021, 15, 18469–18482.

[59]

Cao, Q. H.; Gao, Y.; Pu, J.; Zhao, X.; Wang, Y. X.; Chen, J. P.; Guan, C. Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 2023, 14, 641.

File
12274_2024_6525_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 January 2024
Revised: 27 January 2024
Accepted: 28 January 2024
Published: 03 April 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the Science Technology and Innovation Team in University of Henan Province (No. 24IRTSTHN002), the National Natural Science Foundation of China (No. 22279121), and China Postdoctoral Science Foundation (No. 2022M712863), and DFT calculations were supported by the National Supercomputing Centre in Zhengzhou and the funding of Zhengzhou University.

Return