Journal Home > Volume 17 , Issue 6

The current landscape of chiral covalent organic frameworks (COFs) predominantly centered on constructing asymmetric molecular-scale chirality, often introducing an inherent contradiction to the COF symmetry and limiting diversity. Herein, we overcome these challenges by achieving chiral transfer between one-dimensional (1D) imine linear polymers (LPs) and two-dimensional (2D) network β-ketoenamine COFs composed of achiral monomers. We successfully synthesize several 1D imine LPs with mesoscopic helical chirality, comprising achiral C2-symmetric terephthalaldehyde and diamine linkers in a chiral supramolecular transcription system. Leveraging the irreversible tautomerism mechanism within the linker replacement approach, terephthalaldehyde (TPA) units in these helical 1D LPs are substituted with C3-symmetric 1,3,5-triformylphloroglucinol (TP), yielding the corresponding 2D network β-ketoenamine COFs. Crystallinity and helicity of the resultant β-ketoenamine COFs intimately hinge on reaction conditions, including the aldehyde stoichiometry of Tp and TPA, as well as the quantity and concentration of the catalyst employed. Under optimized conditions, the nucleation and growth were precisely governed, achieving a harmonious equilibrium of crystallinity and helicity within the generated 2D network β-ketoenamine COFs, even with covalent bond rupture, recombination, and topological transition (from [C2 + C2] to [C3 + C2]). Impressively, the ground state chirality inherent to helical 1D LPs seamlessly transfers to helical 2D network β-ketoenamine COFs. This study not only offers new perspectives on the development of chiral functional COFs, but also provides fresh insights into the precise control of COFs' microscopic morphology.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chiral transfer amidst one-dimensional linear polymers and two-dimensional network covalent organic frameworks: Striking a fine balance between helicity and crystallinity

Show Author's information Xinlin Zha1,2,§Mengjuan Zuo2,§Guilin Xu2Zhong Yan2Haining You2Yi Xiong2Ying Liu2Yingying Li2Liyan Yang2Ke Liu2Mufang Li2Tao Zhao1( )Dong Wang1,2( )
College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China

§ Xinlin Zha and Mengjuan Zuo contributed equally to this work.

Abstract

The current landscape of chiral covalent organic frameworks (COFs) predominantly centered on constructing asymmetric molecular-scale chirality, often introducing an inherent contradiction to the COF symmetry and limiting diversity. Herein, we overcome these challenges by achieving chiral transfer between one-dimensional (1D) imine linear polymers (LPs) and two-dimensional (2D) network β-ketoenamine COFs composed of achiral monomers. We successfully synthesize several 1D imine LPs with mesoscopic helical chirality, comprising achiral C2-symmetric terephthalaldehyde and diamine linkers in a chiral supramolecular transcription system. Leveraging the irreversible tautomerism mechanism within the linker replacement approach, terephthalaldehyde (TPA) units in these helical 1D LPs are substituted with C3-symmetric 1,3,5-triformylphloroglucinol (TP), yielding the corresponding 2D network β-ketoenamine COFs. Crystallinity and helicity of the resultant β-ketoenamine COFs intimately hinge on reaction conditions, including the aldehyde stoichiometry of Tp and TPA, as well as the quantity and concentration of the catalyst employed. Under optimized conditions, the nucleation and growth were precisely governed, achieving a harmonious equilibrium of crystallinity and helicity within the generated 2D network β-ketoenamine COFs, even with covalent bond rupture, recombination, and topological transition (from [C2 + C2] to [C3 + C2]). Impressively, the ground state chirality inherent to helical 1D LPs seamlessly transfers to helical 2D network β-ketoenamine COFs. This study not only offers new perspectives on the development of chiral functional COFs, but also provides fresh insights into the precise control of COFs' microscopic morphology.

Keywords: chiral covalent organic frameworks, chiral transfer, dimensional transformation, helicity

References(34)

[1]

Banreti, A.; Bhattacharya, S.; Wien, F.; Matsuo, K.; Réfrégiers, M.; Meinert, C.; Meierhenrich, U.; Hudry, B.; Thompson, D.; Noselli, S. Biological effects of the loss of homochirality in a multicellular organism. Nat. Commun. 2022, 13, 7059.

[2]

Wang, G. Y.; Zhang, H. Y.; Kuang, H.; Xu, C. L.; Xu, L. G. Chiral inorganic nanomaterials for bioapplications. Matter 2023, 6, 1752–1781.

[3]

Liu, M. H.; Zhang, L.; Wang, T. Y. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.

[4]

García, F.; Gómez, R.; Sánchez, L. Chiral supramolecular polymers. Chem. Soc. Rev. 2023, 52, 7524–7548.

[5]

Zhou, C. Q.; Ren, Y. Y.; Han, J.; Gong, X. X.; Wei, Z. X.; Xie, J.; Guo, R. Controllable supramolecular chiral twisted nanoribbons from achiral conjugated oligoaniline derivatives. J. Am. Chem. Soc. 2018, 140, 9417–9425.

[6]

Ma, L. G.; Duan, Y. Y.; Cao, Y. Y.; Asahina, S.; Liu, Z.; Che, S. N. Synthesis of chiral metal oxide complexes with tunable electron transition-based optical activity. Chem. Commun. 2013, 49, 11686–11688.

[7]

Jones, C. D.; Simmons, H. T. D.; Horner, K. E.; Liu, K. Q.; Thompson, R. L.; Steed, J. W. Braiding, branching and chiral amplification of nanofibres in supramolecular gels. Nat. Chem. 2019, 11, 375–381.

[8]

Liu, G. F.; Humphrey, M. G.; Zhang, C.; Zhao, Y. L. Self-assembled stereomutation with supramolecular chirality inversion. Chem. Soc. Rev. 2023, 52, 4443–4487.

[9]

Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

[10]

Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

[11]

Yuan, D.; Dou, Y. H.; Wu, Z. Z.; Tian, Y. H.; Ye, K. H.; Lin, Z.; Dou, S. X.; Zhang, S. Q. Atomically thin materials for next-generation rechargeable batteries. Chem. Rev. 2022, 122, 957–999.

[12]

Jiang, D. L. Covalent organic frameworks: An amazing chemistry platform for designing polymers. Chem 2020, 6, 2461–2483.

[13]

Li, W. D.; Huang, L. Y.; Zhang, H. Y.; Wu, Y.; Wei, F. C.; Zhang, T. T.; Fu, J. W.; Jing, C. B.; Cheng, J. G.; Liu, S. H. Supramolecular mineralization strategy for engineering covalent organic frameworks with superior Zn-I2 battery performances. Matter 2023, 6, 2312–2323.

[14]

Halder, A.; Kandambeth, S.; Biswal, B. P.; Kaur, G.; Roy, N. C.; Addicoat, M.; Salunke, J. K.; Banerjee, S.; Vanka, K.; Heine, T. et al. Decoding the morphological diversity in two dimensional crystalline porous polymers by core planarity modulation. Angew. Chem., Int. Ed. 2016, 55, 7806–7810.

[15]

Huang, J. L.; Shi, Y. R.; Xu, J. Q.; Zheng, J.; Zhu, F.; Liu, X. L.; Ouyang, G. F. Hollow covalent organic framework with “shell-confined” environment for the effective removal of anionic per- and polyfluoroalkyl substances. Adv. Funct. Mater. 2022, 32, 2203171.

[16]

Liu, Y. Y.; Li, X. C.; Wang, S.; Cheng, T.; Yang, H. Y.; Liu, C.; Gong, Y. T.; Lai, W. Y.; Huang, W. Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks. Nat. Commun. 2020, 11, 5561.

[17]

Sasmal, H. S.; Kumar Mahato, A.; Majumder, P.; Banerjee, R. Landscaping covalent organic framework nanomorphologies. J. Am. Chem. Soc. 2022, 144, 11482–11498.

[18]

Tang, X.; Liao, X. J.; Cai, X. T.; Wu, J. L.; Wu, X. Y.; Zhang, Q. N.; Yan, Y. L.; Zheng, S. R.; Jiang, H. W.; Fan, J. et al. Self-assembly of helical nanofibrous chiral covalent organic frameworks. Angew. Chem., Int. Ed. 2023, 62, e202216310.

[19]

Zha, X. L.; Xu, G. L.; Khan, N. A.; Yan, Z.; Zuo, M. J.; Xiong, Y.; Liu, Y.; You, H. N.; Wu, Y.; Liu, K. et al. Sculpting mesoscopic helical chirality into covalent organic framework nanotubes from entirely achiral building blocks. Angew. Chem., Int. Ed. 2024, 63, e202316385.

[20]

Zha, X. L.; Chen, Y. L.; Fan, H.; Yang, Y. G.; Xiong, Y.; Xu, G. L.; Yan, K.; Wang, Y. D.; Xie, Y.; Wang, D. Handedness inversion of chiral 3-aminophenol formaldehyde resin nanotubes mediated by metal coordination. Angew. Chem., Int. Ed. 2021, 60, 7759–7769.

[21]

Zha, X. L.; Xu, G. L.; Xiong, Y.; Yan, Z.; Liu, K.; Li, M. F.; Chen, Y. L.; Lu, J.; Wang, D. Modulating the macroscopic helicity of poly(m-phenylenediamine) by achiral monomer copolymerization. Adv. Funct. Mater. 2023, 33, 2211956.

[22]

Suematsu, K.; Nakamura, K.; Takeda, J. Polyimine, a C=N double bond containing polymers: Synthesis and properties. Polym. J. 1983, 15, 71–79.

[23]

Kandambeth, S.; Biswal, B. P.; Chaudhari, H. D.; Rout, K. C.; Kunjattu, H. S.; Mitra, S.; Karak, S.; Das, A.; Mukherjee, R.; Kharul, U. K. et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 2017, 29, 1603945

[24]

Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527.

[25]

Zhang, M. S.; Li, L. Y.; Lin, Q. M.; Tang, M.; Wu, Y. Y.; Ke, C. F. Hierarchical-coassembly-enabled 3D-printing of homogeneous and heterogeneous covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 5154–5158.

[26]

Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 5328–5331.

[27]

Bai, L. Y.; Phua, S. Z. F.; Lim, W. Q.; Jana, A.; Luo, Z.; Tham, H. P.; Zhao, L. Z.; Gao, Q.; Zhao, Y. L. Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 2016, 52, 4128–4131.

[28]

Liu, Z. Y.; Zhang, K.; Huang, G. J.; Xu, B. Q.; Hong, Y. l.; Wu, X. W.; Nishiyama, Y.; Horike, S.; Zhang, G.; Kitagawa, S. Highly processable covalent organic framework gel electrolyte enabled by side-chain engineering for lithium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202110695.

[29]

Wang, R.; Kong, W. F.; Zhou, T.; Wang, C. C.; Guo, J. Organobase modulated synthesis of high-quality β-ketoenamine-linked covalent organic frameworks. Chem. Commun. 2021, 57, 331–334.

[30]

Yang, Y.; Liang, J.; Pan, F.; Wang, Z.; Zhang, J. Q.; Amin, K.; Fang, J.; Zou, W. J.; Chen, Y. L.; Shi, X. H. et al. Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules. Nat. Commun. 2018, 9, 3808.

[31]

Zhang, C. Y.; Li, Y.; Li, B. Z.; Yang, Y. G. Preparation of single-handed helical carbon/silica and carbonaceous nanotubes by using 4,4'-biphenylene-bridged polybissilsesquioxane. Chem. Asian J. 2013, 8, 2714–2720.

[32]

Wang, Y. F.; Qi, W.; Huang, R. L.; Yang, X. J.; Wang, M. F.; Su, R. X.; He, Z. M. Rational design of chiral nanostructures from self-assembly of a ferrocene-modified dipeptide. J. Am. Chem. Soc. 2015, 137, 7869–7880.

[33]

Cai, X. Y.; Du, J.; Zhang, L. L.; Li, Y.; Li, B. Z.; Li, H. K.; Yang, Y. G. Circularly polarized luminescence of single-handed helical tetraphenylethylene-silica nanotubes. Chem. Commun. 2019, 55, 12176–12179.

[34]

Li, F.; Kan, J. L.; Yao, B. J.; Dong, Y. B. Synthesis of chiral covalent organic frameworks via asymmetric organocatalysis for heterogeneous asymmetric catalysis. Angew. Chem., Int. Ed. 2022, 61, e202115044.

File
12274_2024_6523_MOESM1_ESM.pdf (6.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2023
Revised: 24 January 2024
Accepted: 28 January 2024
Published: 09 March 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U20A20257 and 52102295) and the National key research and development program (No. 2022YFB3805803). Thanks for the reactive monomers support from ShangHai Haohong Scientific Co., Ltd. The authors would like to thank Hongyu Wang from Shiyanjia Lab (www.shiyanjia.com) for his guidance on operation of Brunauer–Emmett–Teller specific surface area.

Return