Journal Home > Volume 17 , Issue 6

The issue of sensitivity attenuation in high-pressure region has been a persistent concern for pressure-sensitive electronic skins. In order to tackle such trade-off between sensitivity and linear range, herein, a hybrid piezoresistive-supercapacitive (HRSC) strategy is proposed via introducing a piezoresistive porous aerogel layer between the charge collecting electrodes and iontronic films of the pressure sensors. Surprisingly, the HRSC-induced impedance regulation and supercapacitive behavior contribute to significant mitigation in sensitivity attenuation, achieving high sensitivity across wide linear range (44.58 kPa−1 from 0 to 3 kPa and 23.6 kPa−1 from 3 to 12 kPa). The HRSC pressure sensor exhibits a low detection limit of 1 Pa, fast responsiveness (~ 130 ms), and excellent cycling stability, allowing to detect tiny pressure of air flow, finger bending, and human respiration. Meanwhile, the HRSC sensor exhibits exceptional perception capabilities for proximity and temperature, broadening its application scenarios in prosthetic perception and electronic skin. The proposed HRSC strategy may boost the ongoing research on structural design of high-performance and multimodal electronic sensors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multifunctional high-performance pressure/proximity/temperature sensors enabled by hybrid resistive-supercapacitive response

Show Author's information Huijun Kong1,2Zhongqian Song2( )Meichun Ding1Changxiang Shao1Jiahui Yu1Baolei Wang1Weiyan Li2Chenwei Li1( )Li Niu3
School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

Abstract

The issue of sensitivity attenuation in high-pressure region has been a persistent concern for pressure-sensitive electronic skins. In order to tackle such trade-off between sensitivity and linear range, herein, a hybrid piezoresistive-supercapacitive (HRSC) strategy is proposed via introducing a piezoresistive porous aerogel layer between the charge collecting electrodes and iontronic films of the pressure sensors. Surprisingly, the HRSC-induced impedance regulation and supercapacitive behavior contribute to significant mitigation in sensitivity attenuation, achieving high sensitivity across wide linear range (44.58 kPa−1 from 0 to 3 kPa and 23.6 kPa−1 from 3 to 12 kPa). The HRSC pressure sensor exhibits a low detection limit of 1 Pa, fast responsiveness (~ 130 ms), and excellent cycling stability, allowing to detect tiny pressure of air flow, finger bending, and human respiration. Meanwhile, the HRSC sensor exhibits exceptional perception capabilities for proximity and temperature, broadening its application scenarios in prosthetic perception and electronic skin. The proposed HRSC strategy may boost the ongoing research on structural design of high-performance and multimodal electronic sensors.

Keywords: structural design, pressure sensor, high sensitivity, multimodal sensor, MXene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) aerogel

References(57)

[1]

Lin, Y. C.; Duan, S. S.; Zhu, D.; Li, Y. H.; Wang, B. H.; Wu, J. Self-powered and interface-independent tactile sensors based on bilayer single-electrode triboelectric nanogenerators for robotic electronic skin. Adv. Intell. Syst. 2023, 5, 2100120.

[2]

Yi, Z. R.; Liu, Z. X.; Li, W. B.; Ruan, T.; Chen, X.; Liu, J. Q.; Yang, B.; Zhang, W. M. Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv. Mater. 2022, 34, 2110291.

[3]

Lv, C. Y.; Tian, C. C.; Jiang, J. S.; Dang, Y.; Liu, Y.; Duan, X. X.; Li, Q. N.; Chen, X. J.; Xie, M. Y. Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Adv. Sci. 2023, 10, 2206807.

[4]

Li, Y. F.; Huang, S. R.; Peng, S. A.; Jia, H.; Pang, J. B.; Ibarlucea, B.; Hou, C. Y.; Cao, Y.; Zhou, W. J.; Liu, H. et al. Toward smart sensing by MXene. Small 2023, 19, 2206126.

[5]

Pang, J. B.; Peng, S. A.; Hou, C. Y.; Zhao, H. B.; Fan, Y. J.; Ye, C.; Zhang, N.; Wang, T.; Cao, Y.; Zhou, W. J. et al. Applications of graphene in five senses, nervous system, and artificial muscles. ACS Sens. 2023, 8, 482–514.

[6]

Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

[7]

Zhu, B. W.; Ling, Y. Z.; Yap, L. W.; Yang, M. J.; Lin, F. E.; Gong, S.; Wang, Y.; An, T. C.; Zhao, Y. M.; Cheng, W. L. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl. Mater. Interfaces 2019, 11, 29014–29021.

[8]

Pang, J. B.; Peng, S. A.; Hou, C. Y.; Wang, X.; Wang, T.; Cao, Y.; Zhou, W. J.; Sun, D.; Wang, K.; Rümmeli, M. H. et al. Applications of MXenes in human-like sensors and actuators. Nano Res. 2023, 16, 5767–5795.

[9]

Wang, S. L.; Deng, W. L.; Yang, T.; Tian, G.; Xiong, D.; Xiao, X.; Zhang, H. R.; Sun, Y.; Ao, Y.; Huang, J. F. et al. Body-area sensor network featuring micropyramids for sports healthcare. Nano Res. 2023, 16, 1330–1337.

[10]

Yu, J. B.; Xian, S.; Zhang, Z. P.; Hou, X. J.; He, J.; Mu, J. L.; Geng, W. P.; Qiao, X. J.; Zhang, L.; Chou, X. J. Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications. Nano Res. 2023, 16, 5490–5502.

[11]

Yuan, H. Z.; Liao, X. B.; Wu, K.; Chen, J. R.; Chen, K.; Zhu, T.; Wang, Y. Q.; Zhang, J. Y.; Liu, G.; Sun, J. Hierarchical wrinkling-cracking architectures for flexible pressure sensors. Adv. Mater. Interfaces 2023, 10, 2202169.

[12]

Kim, T.; Hong, I.; Roh, Y.; Kim, D.; Kim, S.; Im, S.; Kim, C.; Jang, K.; Kim, S.; Kim, M. et al. Spider-inspired tunable mechanosensor for biomedical applications. npj Flex. Electron. 2023, 7, 12.

[13]

Yang, L.; Liu, Y.; Filipe, C. D. M.; Ljubic, D.; Luo, Y. W.; Zhu, H.; Yan, J. X.; Zhu, S. P. Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyhipe foam for pressure sensing. ACS Appl. Mater. Interfaces 2019, 11, 4318–4327.

[14]

Song, Z. Q.; Li, W. Y.; Kong, H. J.; Chen, M. Q.; Bao, Y.; Wang, N.; Wang, W.; Liu, Z. B.; Ma, Y. M.; He, Y. et al. Merkel receptor-inspired integratable and biocompatible pressure sensor with linear and ultrahigh sensitive response for versatile applications. Chem. Eng. J. 2022, 444, 136481.

[15]

Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

[16]

Kong, H. J.; Song, Z. Q.; Xu, J. N.; Qu, D. Y.; Bao, Y.; Wang, W.; Wang, Z. X.; Zhang, Y. W.; Ma, Y. M.; Han, D. X. et al. Untraditional deformation-driven pressure sensor with high sensitivity and ultra-large sensing range up to MPa enables versatile applications. Adv. Mater. Technol. 2020, 5, 2000677.

[17]

Zhang, H.; Zhang, D. Z.; Zhang, B.; Wang, D. Y.; Tang, M. C. Wearable pressure sensor array with layer-by-layer assembled MXene Nanosheets/ag nanoflowers for motion monitoring and human–machine interfaces. ACS Appl. Mater. Interfaces 2022, 14, 48907–48916.

[18]

Li, N.; Gao, S.; Li, Y.; Liu, J. W.; Song, W. H.; Shen, G. Z. Multi-attribute wearable pressure sensor based on multilayered modulation with high constant sensitivity over a wide range. Nano Res. 2023, 16, 7583–7592.

[19]

Zhang, X. Y.; Hu, Z. Y.; Sun, Q.; Liang, X.; Gu, P. Z.; Huang, J.; Zu, G. Q. Bioinspired gradient stretchable aerogels for ultrabroad-range-response pressure-sensitive wearable electronics and high-efficient separators. Angew. Chem., Int. Ed. 2023, 62, e202213952.

[20]

Wang, S.; Gao, F.; Hu, Y. X.; Zhang, S. C.; Shang, H. M.; Ge, C. Y.; Tan, B. Y.; Zhang, X.; Zhang, J.; Hu, P. A. Skin-inspired tactile sensor based on gradient pore structure enable broad range response and ultrahigh pressure resolution. Chem. Eng. J. 2022, 443, 136446.

[21]

Wang, J.; Tenjimbayashi, M.; Tokura, Y.; Park, J. Y.; Kawase, K.; Li, J. T.; Shiratori, S. Bionic fish-scale surface structures fabricated via air/water interface for flexible and ultrasensitive pressure sensors. ACS Appl. Mater. Interfaces 2018, 10, 30689–30697.

[22]

Chao, M. Y.; He, L. Z.; Gong, M.; Li, N.; Li, X. B.; Peng, L. F.; Shi, F.; Zhang, L. Q.; Wan, P. B. Breathable Ti3C2T x MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021, 15, 9746–9758.

[23]

Cheng, Y. F.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2T x MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

[24]

Qin, J.; Yin, L. J.; Hao, Y. N.; Zhong, S. L.; Zhang, D. L.; Bi, K.; Zhang, Y. X.; Zhao, Y.; Dang, Z. M. Flexible and stretchable capacitive sensors with different microstructures. Adv. Mater. 2021, 33, 2008267.

[25]

Pang, C.; Koo, J. H.; Nguyen, A.; Caves, J. M.; Kim, M. G.; Chortos, A.; Kim, K.; Wang, P. J.; Tok, J. B.; Bao, Z. N. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 2015, 27, 634–640.

[26]

Niu, H. S.; Chen, Y. K.; Kim, E. S.; Zhou, W. J.; Li, Y.; Kim, N. Y. Ultrasensitive capacitive tactile sensor with heterostructured active layers for tiny signal perception. Chem. Eng. J. 2022, 450, 138258.

[27]

Ma, J. M.; Zhu, J. Q.; Ma, P.; Jie, Y.; Wang, Z. L.; Cao, X. Fish bladder film-based triboelectric nanogenerator for noncontact position monitoring. ACS Energy Lett. 2020, 5, 3005–3011.

[28]

Ha, M.; Lim, S.; Cho, S.; Lee, Y.; Na, S.; Baig, C.; Ko, H. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 2018, 12, 3964–3974.

[29]

Li, Y. M.; Chen, S. E.; Yan, H.; Jiang, H. W.; Luo, J. J.; Zhang, C.; Pang, Y. K.; Tan, Y. Q. Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing. Chem. Eng. J. 2023, 468, 143572.

[30]

Chen, Z. F.; Wang, Z.; Li, X. M.; Lin, Y. X.; Luo, N. Q.; Long, M. Z.; Zhao, N.; Xu, J. B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017, 11, 4507–4513.

[31]

Huang, X. M.; Qin, Q. H.; Wang, X. Q.; Xiang, H. J.; Zheng, J. L.; Lu, Y.; Lv, C. J.; Wu, K. L.; Yan, L. X.; Wang, N. et al. Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensing. ACS Nano 2021, 15, 19783–19792.

[32]

Han, C.; Zhang, H.; Chen, Q.; Li, T.; Kong, L. J.; Zhao, H.; He, L. R. A directional piezoelectric sensor based on anisotropic PVDF/MXene hybrid foam enabled by unidirectional freezing. Chem. Eng. J. 2022, 450, 138280.

[33]

Li, R. Y.; Si, Y.; Zhu, Z. J.; Guo, Y. J.; Zhang, Y. J.; Pan, N.; Sun, G.; Pan, T. R. Supercapacitive iontronic nanofabric sensing. Adv. Mater. 2017, 29, 1700253.

[34]

Wang, S.; Xiao, J. L.; Liu, H. T.; Zhang, L. Silk nanofibrous iontronic sensors for accurate blood pressure monitoring. Chem. Eng. J. 2023, 453, 139815.

[35]

Li, T.; Luo, H.; Qin, L.; Wang, X. W.; Xiong, Z. P.; Ding, H. Y.; Gu, Y.; Liu, Z.; Zhang, T. Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small 2016, 12, 5042–5048.

[36]

Ma, L. Q.; Shuai, X. T.; Hu, Y. G.; Liang, X. W.; Zhu, P. L.; Sun, R.; Wong, C. P. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. J. Mater. Chem. C 2018, 6, 13232–13240.

[37]

Kwon, D.; Lee, T. I.; Shim, J.; Ryu, S.; Kim, M. S.; Kim, S.; Kim, T. S.; Park, I. Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer. ACS Appl. Mater. Interfaces 2016, 8, 16922–16931.

[38]

Zhu, Z. J.; Li, R. Y.; Pan, T. R. Imperceptible epidermal-iontronic interface for wearable sensing. Adv. Mater. 2018, 30, 1705122.

[39]

Lin, Q. P.; Huang, J.; Yang, J. L.; Huang, Y.; Zhang, Y. F.; Wang, Y. J.; Zhang, J. M.; Wang, Y.; Yuan, L. L.; Cai, M. K. et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring. Adv. Healthc. Mater. 2020, 9, 2001023.

[40]

Li, S.; Chu, J. R.; Li, B. Q.; Chang, Y.; Pan, T. R. Handwriting iontronic pressure sensing origami. ACS Appl. Mater. Interfaces 2019, 11, 46157–46164.

[41]

Bai, N. N.; Wang, L.; Wang, Q.; Deng, J.; Wang, Y.; Lu, P.; Huang, J.; Li, G.; Zhang, Y.; Yang, J. L. et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 2020, 11, 209.

[42]

Chen, Q. L.; Yang, J.; Chen, B.; Feng, J. S.; Xiao, S. H.; Yue, Q.; Zhang, X.; Wang, T. H. Wearable pressure sensors with capacitive response over a wide dynamic range. ACS Appl. Mater. Interfaces 2022, 14, 44642–44651.

[43]

Chhetry, A.; Kim, J.; Yoon, H.; Park, J. Y. Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications. ACS Appl. Mater. Interfaces 2019, 11, 3438–3449.

[44]

Ha, K. H.; Zhang, W. Y.; Jang, H.; Kang, S.; Wang, L.; Tan, P.; Hwang, H.; Lu, N. S. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv. Mater. 2021, 33, 2103320.

[45]

Kong, H. J.; Song, Z. Q.; Li, W. Y.; Bao, Y.; Qu, D. Y.; Ma, Y. M.; Liu, Z. B.; Wang, W.; Wang, Z. X.; Han, D. X. et al. Skin-inspired hair–epidermis–dermis hierarchical structures for electronic skin sensors with high sensitivity over a wide linear range. ACS Nano 2021, 15, 16218–16227.

[46]

Zhao, P. F.; Zhang, R. M.; Tong, Y. H.; Zhao, X. L.; Zhang, T.; Wang, X.; Tang, Q. X.; Liu, Y. C. Shape-designable and reconfigurable all-paper sensor through the sandwich architecture for pressure/proximity detection. ACS Appl. Mater. Interfaces 2021, 13, 49085–49095.

[47]

Wang, S.; Wang, X. Y.; Wang, Q.; Ma, S. Q.; Xiao, J. L.; Liu, H. T.; Pan, J.; Zhang, Z.; Zhang, L. Flexible optoelectronic multimodal proximity/pressure/temperature sensors with low signal interference. Adv. Mater. 2023, 35, 2304701.

[48]

Wang, F.; Chen, J. W.; Cui, X. H.; Liu, X. N.; Chang, X. H.; Zhu, Y. T. Wearable ionogel-based fibers for strain sensors with ultrawide linear response and temperature sensors insensitive to strain. ACS Appl. Mater. Interfaces 2022, 14, 30268–30278.

[49]

Zhang, S. S.; Tu, T. T.; Li, T. Y.; Cai, Y.; Wang, Z. Y.; Zhou, Y.; Wang, D.; Fang, L.; Ye, X. S.; Liang, B. 3D MXene/PEDOT:PSS composite aerogel with a controllable patterning property for highly sensitive wearable physical monitoring and robotic tactile sensing. ACS Appl. Mater. Interfaces 2022, 14, 23877–23887.

[50]

Gund, G. S.; Park, J. H.; Harpalsinh, R.; Kota, M.; Shin, J. H.; Kim, T.-i.; Gogotsi, Y.; Park, H. S. MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule 2019, 3, 164-176.

[51]

Kogut, L.; Komvopoulos, K. Electrical contact resistance theory for conductive rough surfaces. J. Appl. Phys. 2003, 94, 3153–3162.

[52]

Qu, X. Y.; Li, J.; Han, Z. L.; Liang, Q. Q.; Zhou, Z.; Xie, R. M.; Wang, H. P.; Chen, S. Y. Highly sensitive fiber pressure sensors over a wide pressure range enabled by resistive–capacitive hybrid response. ACS Nano 2023, 17, 14904–14915.

[53]

Gao, L. B.; Wang, M.; Wang, W. D.; Xu, H. C.; Wang, Y. J.; Zhao, H. T.; Cao, K.; Xu, D. D.; Li, L. Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 2021, 13, 140.

[54]

Xiong, Y. X.; Shen, Y. K.; Tian, L.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 2020, 70, 104436.

[55]

Luo, Y. S.; Shao, J. Y.; Chen, S. R.; Chen, X. L.; Tian, H. M.; Li, X. M.; Wang, L.; Wang, D. R.; Lu, B. H. Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS Appl. Mater. Interfaces 2019, 11, 17796–17803.

[56]

Li, R. Q.; Panahi-Sarmad, M.; Chen, T. J.; Wang, A.; Xu, R. X.; Xiao, X. L. Highly sensitive and flexible capacitive pressure sensor based on a dual-structured nanofiber membrane as the dielectric for attachable wearable electronics. ACS Appl. Electron. Mater. 2022, 4, 469–477.

[57]

Guo, Y. J.; Gao, S.; Yue, W. J.; Zhang, C. W.; Li, Y. Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method. ACS Appl. Mater. Interfaces 2019, 11, 48594–48603.

File
12274_2024_6522_MOESM1_ESM.pdf (502.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 December 2023
Revised: 18 January 2024
Accepted: 28 January 2024
Published: 13 March 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22104021, 52303075, and 22309105), Natural Science Foundation of Shandong Province (No. ZR2023QB227), Department of Science and Technology of Guangdong Province (No. 2022A1515110014), and Taishan Young Scholar Program (Nos. tsqn202306267 and tsqnz20231235).

Return