AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO2 coupled with biomass conversion

Guangbiao Cao1,§Haoran Xing1,§Haoguan Gui1Chao Yao1Yinjuan Chen1( )Yongsheng Chen2( )Xiazhang Li1( )
National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0373, USA

§ Guangbiao Cao and Haoran Xing contributed equally to this work.

Show Author Information

Graphical Abstract

Plasmonic Bi quantum dots immobilized on phosphoric acid modified attapulgite nanorod enabled high photothermal catalytic reduction of CO2 coupled with oxidation of benzyl alcohol.

Abstract

Simultaneous conversion of CO2 and biomass into value-added chemicals through solar-driven catalysis holds tremendous importance for fostering a sustainable circular economy. Herein, plasmonic Bi quantum dots were immobilized on phosphoric acid modified attapulgite (P-ATP) nanorod using an in-situ reduction–deposition method, and were employed for photocatalytic reduction of CO2 coupled with oxidation of biomass-derived benzyl alcohol. Results revealed that Bi atoms successfully integrated into the basal structure of P-ATP, forming chemically coordinated Bi–O–Si bonds that served as efficient transportation channels for electrons. The incorporation of high-density monodispersed Bi quantum dots induced a surface plasmon resonance (SPR) effect, expanding the light absorption range into the near-infrared region. As a consequence, the photo-thermal transformation was significantly accelerated, leading to enhanced reaction kinetics. Notably, 50% Bi/P-ATP nanocomposite exhibited the highest plasmon-mediated photocatalytic CH4 generation (115.7 μmol·g−1·h−1) and CO generation (44.9 μmol·g−1·h−1), along with remarkable benzaldehyde generation rate of 79.5 μmol·g−1·h−1 in the photo-redox coupling system under solar light irradiation. The hydrogen protons released from the oxidation of benzyl alcohol facilitated the incorporation of more hydrogen protons into CO2 to form key CH3O intermediates. This work demonstrates the synergistic solar-driven valorization of CO2 and biomass using natural mineral based catalyst.

Electronic Supplementary Material

Download File(s)
12274_2024_6521_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Shao, S. X.; Cui, C. Q.; Tang, Z. Y.; Li, G. D. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products. Nano Res. 2022, 15, 10110–10133.

[2]

Samanta, S.; Srivastava, R. Catalytic conversion of CO2 to chemicals and fuels: The collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride. Mater. Adv. 2020, 1, 1506–1545.

[3]

Gu, H. L.; Wu, J.; Zhang, L. M. Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 9747–9763.

[4]

Li, T.; Huang, H. W.; Wang, S. B.; Mi, Y.; Zhang, Y. H. Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction. Nano Res. 2023, 16, 8542–8569.

[5]

Lam, E.; Reisner, E. A TiO2-Co(terpyridine)2 photocatalyst for the selective oxidation of cellulose to formate coupled to the reduction of CO2 to syngas. Angew. Chem., Int. Ed. 2021, 60, 23306–23312.

[6]

Liu, Z. D.; Ma, J. L.; Guo, Y. Z.; Hong, M.; Sun, R. C. Photocatalytic CO2 reduction integrated with biomass selective oxidation via single-atom Ru and P dual sites on carbon nitride. Appl. Catal. B Environ. 2024, 342, 123429.

[7]

Liu, Z. D.; Zhang, J. Q.; Li, X. Z.; Cui, R.; Ma, J. L.; Sun, R. C. Simultaneous photocatalytic biomass conversion and CO2 reduction over high crystalline oxygen-doped carbon nitride. iScience 2023, 26, 107416.

[8]

Ling, W. K.; Ma, J. L.; Liu, Z. D.; Cui, R.; Zhang, J. Q.; Li, X. Z.; Hong, M.; Sun, R. C. Enhancing biomass oxidation with carbon nitride nanosheets ring inserted on C. I. Pigment yellow 53 photocatalysts for simultaneous CO and lactic acid production. Chem. Eng. J. 2023, 475, 146117.

[9]

Liu, Z. D.; Ma, J. L.; Hong, M.; Sun, R. C. Potassium and sulfur dual sites on highly crystalline carbon nitride for photocatalytic biorefinery and CO2 reduction. ACS Catal. 2023, 13, 2106–2117.

[10]

Li, C.; Li, J.; Qin, L.; Yang, P. P.; Vlachos, D. G. Recent advances in the photocatalytic conversion of biomass-derived furanic compounds. ACS Catal. 2021, 11, 11336–11359.

[11]

Wang, Z. Q.; Yang, Z. Q.; Fang, R. M.; Yan, Y. F.; Ran, J. Y.; Zhang, L. A state-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum. Chem. Eng. J. 2022, 429, 1385–8947.

[12]

Ramakrishnan, S. B.; Mohammadparast, F.; Dadgar, A. P.; Mou, T.; Le, T. E.; Wang, B.; Jain, P. K.; Andiappan, M. Photoinduced electron and energy transfer pathways and photocatalytic mechanisms in hybrid plasmonic photocatalysis. Adv. Opt. Mater. 2021, 9, 01128.

[13]

Li, J.; Lou, Z. Z.; Li, B. J. Engineering plasmonic semiconductors for enhanced photocatalysis. J. Mater. Chem. A 2021, 9, 18818–18835.

[14]

Verma, R.; Belgamwar, R.; Polshettiwar, V. Plasmonic photocatalysis for CO2 conversion to chemicals and fuels. ACS Mater. Lett. 2021, 3, 574–598.

[15]

Guo, R. X.; Wang, G.; Liu, W. S. Clever use of natural clay materials in the synthesis of non-symmetric carbonates by utilizing CO2 as a feedstock: Ag/attapulgite nano-catalyst. Dalton Trans. 2020, 49, 10232–10239.

[16]

Lu, Y. S.; Wang, A. Q. From structure evolution of palygorskite to functional material: A review. Microporous Mesoporous Mater. 2022, 333, 111765.

[17]

Liu, Y. H.; Zhang, C. Y.; Shi, A. Q.; Zuo, S. X.; Yao, C.; Ni, C. Y.; Li, X. Z. Full solar spectrum driven CO2 conversion over S-scheme natural mineral nanocomposite enhanced by LSPR effect. Powder Technol. 2022, 396, 615–625.

[18]

Cao, G. B.; Ye, X. H.; Duan, S. J.; Cao, Z. W.; Zhang, C. Y.; Yao, C.; Li, X. Z. Plasmon enhanced Sn: In2O3/attapulgite S-scheme heterojunction for efficient photothermal reduction of CO2. Colloids Surf. A: Physicochem. Eng. Aspects 2023, 656, 130398.

[19]

Wang, Z. Y.; Yan, S.; Sun, Y. J.; Xiong, T.; Dong, F.; Zhang, W. Bi metal sphere/graphene oxide nanohybrids with enhanced direct plasmonic photocatalysis. Appl. Catal. B: Environ. 2017, 214, 148–157.

[20]

Ni, Z. L.; Zhang, W. D.; Jiang, G. M.; Wang, X. P.; Lu, Z. Z.; Sun, Y. J.; Li, X. W.; Zhang, Y. X.; Dong, F. Enhanced plasmonic photocatalysis by SiO2@Bi microspheres with hot-electron transportation channels via Bi–O–Si linkages. Chin. J. Catal. 2017, 38, 1174–1183.

[21]

Xu, F. X.; Wang, J. G.; Zhang, N. C.; Liang, H.; Sun, H. H. Simultaneously generating Bi quantum dot and oxygen vacancy on Bi2MoO6 nanosheets for boosting photocatalytic selective alcohol oxidation. Appl. Surf. Sci. 2022, 575, 151738.

[22]

Zhao, X. Y.; Li, J.; Kong, X. G.; Li, C. C.; Lin, B.; Dong, F.; Yang, G. D.; Shao, G. S.; Xue, C. Carbon dots mediated in situ confined growth of Bi clusters on g-C3N4 nanomeshes for boosting plasma-assisted photoreduction of CO2. Small 2022, 18, 2204154.

[23]

Li, X. Z.; Wang, Z. D.; Shi, H. Y.; Dai, D.; Zuo, S. X.; Yao, C.; Ni, C. Y. Full spectrum driven SCR removal of NO over hierarchical CeVO4/attapulgite nanocomposite with high resistance to SO2 and H2O. J. Hazard. Mater. 2020, 386, 121977.

[24]

Beura, R.; Thangadurai, P. Effect of Sn doping in ZnO on the photocatalytic activity of ZnO-graphene nanocomposite with improved activity. J. Environ. Chem. Eng. 2018, 6, 5087–5100.

[25]

Yu, Z. Z.; Yang, K.; Yu, C. L.; Lu, K. Q.; Huang, W. Y.; Xu, L.; Zou, L. X.; Wang, S. B.; Chen, Z.; Hu, J. et al. Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO2 photoreduction. Adv. Funct. Mater. 2022, 32, 2111999.

[26]

Liu, L.; Deng, X. Y.; Liao, Y.; Xiao, D. T.; Wang, M. Activated carbon/attapulgite composites for radon adsorption. Mater. Lett. 2021, 285, 129177.

[27]

Wang, Y. S.; Wang, C. S.; Chen, M. Q.; Tang, Z. Y.; Yang, Z. L.; Hu, J. X.; Zhang, H. Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts—Part I: Effect of nickel content. Fuel Process. Technol. 2019, 192, 227–238.

[28]

Kang, C.; Gao, L. W.; Zhu, H.; Lang, C. Y.; Jiang, J. L.; Wei, J. Adsorption of Hg(II) in solution by mercaptofunctionalized palygorskite. Environ. Sci. Pollut. Res. 2021, 28, 66287–66302.

[29]

Dong, F.; Xiong, T.; Sun, Y. J.; Zhao, Z. W.; Zhou, Y.; Feng, X.; Wu, Z. B. A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 2014, 50, 10386–10389.

[30]

Liu, Y. H.; Chu, X. L., Shi, A. Q., Yao, C., Ni, C.Y., Li, X. Z. Construction of 2D bismuth silicate heterojunctions from natural mineral toward cost-effective photocatalytic reduction of CO2. Ind. Eng. Chem. Res. 2022, 61, 12294–12306

[31]

Liu, Y. H.; Li, X. Z.; Su, H.; Chen, X. F.; Zuo, S. X.; Qian, J. C.; Yao, C. Plasmonic W18O49/attapulgite nanocomposite with enhanced photofixation of nitrogen under full-spectrum light. J. Mater. Sci.: Mater. Electron. 2019, 30, 20019–20028.

[32]

Jing, L. Q.; Xie, M.; Xu, Y. G.; Tong, C.; Zhao, H.; Zhong, N.; Li, H. M.; Gates, I. D.; Hu, J. G. Multifunctional 3D MoS x /Zn3In2S6 nanoflower for selective photothermal-catalytic biomass oxidative and non-selective organic pollutants degradation. Appl. Catal. B: Environ. 2022, 318, 121814.

[33]

Yan, X. Q.; Zhu, X. H.; Li, R. H.; Chen, W. X. Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light. J. Hazard. Mater. 2016, 303, 1–9.

[34]

Wu, Y. Z.; Yue, X. Y.; Fan, J. J.; Hao, X. M.; Xiang, Q. J. In situ fabrication of plasmonic Bi/CsPbBr3 composite photocatalyst toward enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 2023, 609, 155391.

[35]

Zhong, M. H.; Li, X. Z.; Chu, X. N.; Gui, H. G.; Zuo, S. X.; Yao, C.; Li, Z. Y.; Chen, Y. S. Solar driven catalytic conversion of cellulose biomass into lactic acid over copper reconstructed natural mineral. Appl. Catal. B: Environ. 2022, 317, 121718.

[36]

Li, X. Z.; Shi, H. Y.; Zuo, S. X.; Gao, B. Y.; Han, C. Y.; Wang, T. S.; Yao, C.; Ni, C. Y. Lattice reconstruction of one-dimensional mineral to achieve dendritic heterojunction for cost-effective nitrogen photofixation. Chem. Eng. J. 2021, 414, 128797.

[37]

Sun, L. G.; Ye, X. H.; Cao, Z. W.; Zhang, C. Y.; Yao, C.; Ni, C. Y.; Li, X. Z. Upconversion enhanced photocatalytic conversion of lignin biomass into valuable product over CeVO4/palygorskite nanocomposite: Effect of Gd3+ incorporation. Appl. Catal. A: General 2022, 648, 118923.

[38]

Estrada-Pomares, J.; Ramos-Terrón, S.; Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S.; Rodríguez-Padrón, D.; Luque, R.; De Miguel G. Mechanochemically designed bismuth-based halide perovskites for efficient photocatalytic oxidation of vanillyl alcohol. J. Mater. Chem. A 2022, 10, 11298–11305.

[39]

Shi, Y.; Li, J. Z.; Huang, D.; Wang, X. W.; Huang, Y. P.; Chen, C. C.; Li, R. P. Specific adsorption and efficient degradation of cylindrospermopsin on oxygen-vacancy sites of BiOBr. ACS Catal. 2023, 13, 445–458.

[40]

Wang, Q.; Zhang, M.; Chen, C. C.; Ma, W. H.; Zhao, J. C. Photocatalytic aerobic oxidation of alcohols on TiO2: The acceleration effect of a Bronsted acid. Angew. Chem., Int. Ed. 2010, 49, 7976–7979.

[41]

Tang, Z. L.; He, W. J.; Wang, Y. L.; Wei, Y. C.; Yu, X. L.; Xiong, J.; Wang, X.; Zhang, X.; Zhao, Z.; Liu, J. Ternary heterojunction in rGO-coated Ag/Cu2O catalysts for boosting selective photocatalytic CO2 reduction into CH4. Appl. Catal. B: Environ. 2022, 311, 121371.

[42]

He, W. J.; Wei, Y. C.; Xiong, J.; Tang, Z. L.; Song, W. Y.; Liu, J.; Zhao, Z. Insight into reaction pathways of CO2 photoreduction into CH4 over hollow microsphere Bi2MoO6-supported Au catalysts. Chem. Eng. J. 2022, 433, 133540.

[43]

Rahimi, F. A.; Dey, S.; Verma, P.; Maji, T. K. Photocatalytic CO2 reduction based on a Re(I)-integrated conjugated microporous polymer: Role of a sacrificial electron donor in product selectivity and efficiency. ACS Catal. 2023, 13, 5969–5978.

[44]

Zhang, M. M.; Wang, C. H.; Wang, Y. Y.; Li, S. M.; Zhang, X. T.; Liu, Y. C. Tunable bismuth doping/loading endows NaTaO3 nanosheet highly selective photothermal reduction of CO2. Nano Res. 2022, 16, 2142–2151.

[45]

He, W. J.; Li, J. Y.; Hou, X. F.; Chen, P.; Wang, H.; Dong, X. A.; Dong, F.; Sun, Y. J. Light-induced secondary hydroxyl defects in Sr1− x Sn(OH)6 enable sustained and efficient photocatalytic toluene mineralization. Chem. Eng. J. 2022, 427, 131764.

[46]

Dong, X.; Cui, W.; Wang, H.; Li, J. Y.; Sun, Y. J.; Wang, H. Q.; Zhang, Y. X.; Huang, H. W.; Dong, F. Promoting ring-opening efficiency for suppressing toxic intermediates during photocatalytic toluene degradation via surface oxygen vacancies. Sci. Bull. 2019, 64, 669–678.

[47]

Sheng, Z. Y.; Ma, D. R.; He, Q.; Wu, K.; Yang, L. Mechanism of photocatalytic toluene oxidation with ZnWO4: A combined experimental and theoretical investigation. Catal. Sci. Technol. 2019, 9, 5692–5697.

Nano Research
Pages 5061-5072
Cite this article:
Cao G, Xing H, Gui H, et al. Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO2 coupled with biomass conversion. Nano Research, 2024, 17(6): 5061-5072. https://doi.org/10.1007/s12274-024-6521-9
Topics:

381

Views

4

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 30 November 2023
Revised: 12 January 2024
Accepted: 28 January 2024
Published: 04 March 2024
© Tsinghua University Press 2024
Return