Journal Home > Online First

Employing the alkaline water electrolysis system to generate hydrogen holds great prospects but still poses significant challenges, particularly for the construction of hydrogen evolution reaction (HER) catalysts operating at ampere-level current density. Herein, the unique Ru and RuP2 dual nano-islands are deliberately implanted on N-doped carbon substrate (denoted as Ru-RuP2/NC), in which a built-in electric field (BEF) is spontaneously generated between Ru-RuP2 dual nano-islands driven by their work function difference. Experimental and theoretical results unveil that such constructed BEF could serve as the driving force for triggering fast hydrogen spillover process on bridged Ru-RuP2 dual nano-islands, which could invalidate the inhibitory effect of high hydrogen coverage at ampere-level current density, and synchronously speed up the water dissociation on Ru nano-islands and hydrogen adsorption/desorption on RuP2 nano-islands through hydrogen spillover process. As a result, the Ru-RuP2/NC affords an ultra-low overpotential of 218 mV to achieve 1.0 A·cm−2 along with the superior stability over 1000 h, holding the great promising prospect in practical applications at ampere-level current density. More importantly, this work is the first to advance the scientific understanding of the relationship between the constructed BEF and hydrogen spillover process, which could be enlightening for the rational design of the cost-effective alkaline HER catalysts at ampere-level current density.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hydrogen spillover bridged dual nano-islands triggered by built-in electric field for efficient and robust alkaline hydrogen evolution at ampere-level current density

Show Author's information Kecheng Tong1,§Liangliang Xu2,§Hanxu Yao3,4,§Xingkun Wang1,3( )Canhui Zhang1Fan Yang1Lei Chu1Jinwoo Lee2( )Heqing Jiang3( )Minghua Huang1( )
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daejeon 34141, Republic of Korea
Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Kecheng Tong, Liangliang Xu, and Hanxu Yao contributed equally to this work.

Abstract

Employing the alkaline water electrolysis system to generate hydrogen holds great prospects but still poses significant challenges, particularly for the construction of hydrogen evolution reaction (HER) catalysts operating at ampere-level current density. Herein, the unique Ru and RuP2 dual nano-islands are deliberately implanted on N-doped carbon substrate (denoted as Ru-RuP2/NC), in which a built-in electric field (BEF) is spontaneously generated between Ru-RuP2 dual nano-islands driven by their work function difference. Experimental and theoretical results unveil that such constructed BEF could serve as the driving force for triggering fast hydrogen spillover process on bridged Ru-RuP2 dual nano-islands, which could invalidate the inhibitory effect of high hydrogen coverage at ampere-level current density, and synchronously speed up the water dissociation on Ru nano-islands and hydrogen adsorption/desorption on RuP2 nano-islands through hydrogen spillover process. As a result, the Ru-RuP2/NC affords an ultra-low overpotential of 218 mV to achieve 1.0 A·cm−2 along with the superior stability over 1000 h, holding the great promising prospect in practical applications at ampere-level current density. More importantly, this work is the first to advance the scientific understanding of the relationship between the constructed BEF and hydrogen spillover process, which could be enlightening for the rational design of the cost-effective alkaline HER catalysts at ampere-level current density.

Keywords: built-in electric field, hydrogen spillover, dual nano-islands, ampere-level current density, alkaline hydrogen evolution

References(79)

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[3]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[4]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[5]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[6]

Li, Z. J.; Wu, X. D.; Jiang, X.; Shen, B. B.; Teng, Z. S.; Sun, D. M.; Fu, G. T.; Tang, Y. W. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv. Powder Mater. 2022, 1, 100020.

[7]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[8]

Cao, H.; Wang, Q. L.; Zhang, Z. S.; Yan, H. M.; Zhao, H. Y.; Yang, H. B.; Liu, B.; Li, J.; Wang, Y. G. Engineering single-atom electrocatalysts for enhancing kinetics of acidic Volmer reaction. J. Am. Chem. Soc. 2023, 145, 13038–13047.

[9]

Xu, X. M.; Chen, Y. B.; Zhou, W.; Zhu, Z. H.; Su, C.; Liu, M. L.; Shao, Z. P. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442–6448.

[10]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[11]

Abdelghafar, F.; Xu, X. M.; Jiang, S. P.; Shao, Z. P. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep.: Energy 2022, 2, 100144.

[12]

McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899.

[13]

Xu, X. J.; Hou, X. B.; Du, P. Y.; Zhang, C. H.; Zhang, S. C.; Wang, H. L.; Toghan, A.; Huang, M. H. Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis. Nano Res. 2022, 15, 7124–7133.

[14]

Li, J. Y.; Xu, X. J.; Hou, X. B.; Zhang, S. C.; Su, G.; Tian, W. Q.; Wang, H. L.; Huang, M. H.; Toghan, A. Interface engineering of NiSe2 Nanowrinkles/Ni5P4 nanorods for boosting urea oxidation reaction at large current densities. Nano Res. 2023, 16, 8853–8862.

[15]

An, C. H.; Kang, W.; Deng, Q. B.; Hu, N. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met. 2022, 41, 378–384.

[16]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[17]

Tang, J. Y.; Xu, X. M.; Tang, T.; Zhong, Y. J.; Shao, Z. P. Perovskite-based electrocatalysts for cost-effective ultrahigh-current-density water splitting in anion exchange membrane electrolyzer cell. Small Methods 2022, 6, 2201099.

[18]

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

[19]

Yao, H. X.; Wang, X. K.; Li, K.; Li, C.; Zhang, C. H.; Zhou, J.; Cao, Z. W.; Wang, H. L.; Gu, M.; Huang, M. H. et al. Strong electronic coupling between ruthenium single atoms and ultrafine nanoclusters enables economical and effective hydrogen production. Appl. Catal. B: Environ. 2022, 312, 121378.

[20]

Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.

[21]

Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

[22]

Zhang, Y. D.; Arpino, K. E.; Yang, Q.; Kikugawa, N.; Sokolov, D. A.; Hicks, C. W.; Liu, J.; Felser, C.; Li, G. W. Observation of a robust and active catalyst for hydrogen evolution under high current densities. Nat. Commun. 2022, 13, 7784.

[23]

Wang, X. K.; Yao, H. X.; Zhang, C. H.; Li, C.; Tong, K. C.; Gu, M.; Cao, Z. W.; Huang, M. H.; Jiang, H. Q. Double-tuned RuCo dual metal single atoms and nanoalloy with synchronously expedited Volmer/Tafel kinetics for effective and ultrastable ampere-level current density hydrogen production. Adv. Funct. Mater. 2023, 33, 2301804.

[24]

Wang, L.; Liu, Y. N.; Chen, Z. F.; Dai, Q. Z.; Dong, C. L.; Yang, B.; Li, Z. J.; Hu, X. B.; Lei, L. C.; Hou, Y. Theory-guided design of electron-deficient ruthenium cluster for ampere-level current density electrochemical hydrogen evolution. Nano Energy 2023, 115, 108694.

[25]

Hu, Q.; Gao, K. R.; Wang, X. D.; Zheng, H. J.; Cao, J. Y.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958.

[26]

Luo, Y. T.; Zhang, Z. Y.; Yang, F. N.; Li, J.; Liu, Z. B.; Ren, W. C.; Zhang, S.; Liu, B. L. Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 2021, 14, 4610–4619.

[27]

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

[28]

Li, J. Y.; Hu, J.; Zhang, M. K.; Gou, W. Y.; Zhang, S.; Chen, Z.; Qu, Y. Q.; Ma, Y. Y. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3502.

[29]

Fu, H. Q.; Zhou, M.; Liu, P. F.; Liu, P. R.; Yin, H. J.; Sun, K. Z.; Yang, H. G.; Al-Mamun, M.; Hu, P. J.; Wang, H. F. et al. Hydrogen spillover-bridged Volmer/Tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential. J. Am. Chem. Soc. 2022, 144, 6028–6039.

[30]

Wang, Y. B.; Lu, Q.; Li, F.; Guan, D. Q.; Bu, Y. F. Atomic-scale configuration enables fast hydrogen migration for electrocatalysis of acidic hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2213523.

[31]

Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3− x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038–16042.

[32]

Wei, Z. W.; Wang, H. J.; Zhang, C.; Xu, K.; Lu, X. L.; Lu, T. B. Reversed charge transfer and enhanced hydrogen spillover in platinum nanoclusters anchored on titanium oxide with rich oxygen vacancies boost hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 16622–16627.

[33]

Yu, Z. X.; Rui, X. H.; Yu, Y. Hydrogen spillover in Pt5Ru1 nanoalloy decorated Ni3S2 enabling pH-universal electrocatalytic hydrogen evolution. EES Catal 2023, 1, 695–703.

[34]

Xing, S. F.; Xiong, M.; Zhao, S. C.; Zhang, B. Q.; Qin, Y.; Gao, Z. Improving the efficiency of hydrogen spillover by an organic molecular decoration strategy for enhanced catalytic hydrogenation performance. ACS Catal. 2023, 13, 4003–4011.

[35]

Wang, Y. Q.; Tao, L.; Xiao, Z. H.; Chen, R.; Jiang, Z. Q.; Wang, S. Y. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 2018, 28, 1705356.

[36]

Merki, D.; Fierro, S.; Vrubela, H.; Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267.

[37]

Qin, Q.; Jang, H.; Chen, L. L.; Nam, G.; Liu, X. E.; Cho, J. Low loading of Rh x P and RuP on N,P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions. Adv. Energy Mater. 2018, 8, 1801478.

[38]

Zhao, Y.; Zhang, X. Y.; Gao, Y. X.; Chen, Z.; Li, Z. J.; Ma, T. Y.; Wu, Z. X.; Wang, L.; Feng, S. H. Heterostructure of RuO2-RuP2/Ru derived from HMT-based coordination polymers as superior pH-universal electrocatalyst for hydrogen evolution reaction. Small 2022, 18, 2105168.

[39]

Zhou, F.; Sa, R.; Zhang, X.; Zhang, S.; Wen, Z. H.; Wang, R. H. Robust ruthenium diphosphide nanoparticles for pH-universal hydrogen evolution reaction with platinum-like activity. Appl. Catal. B: Environ. 2020, 274, 119092.

[40]

Zhang, S. C.; Tan, C. H.; Yan, R. P.; Zou, X. F.; Hu, F. L.; Mi, Y.; Yan, C.; Zhao, S. L. Constructing built-in electric field in heterogeneous nanowire arrays for efficient overall water electrolysis. Angew. Chem., Int. Ed. 2023, 62, e202302795.

[41]

Pu, Z. H.; Amiinu, I. S.; Kou, Z. K.; Li, W. Q.; Mu, S. C. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2017, 56, 11559–11564.

[42]

Du, H. F.; Du, Z. Z.; Wang, T. F.; Li, B. X.; He, S.; Wang, K.; Xie, L. H.; Ai, W.; Huang, W. Unlocking interfacial electron transfer of ruthenium phosphides by homologous core-shell design toward efficient hydrogen evolution and oxidation. Adv. Mater. 2022, 34, 2204624.

[43]

Zhao, X. L.; Wu, G.; Zheng, X. S.; Jiang, P.; Yi, J. D.; Zhou, H.; Gao, X. P.; Yu, Z. Q.; Wu, Y. E. A double atomic-tuned RuBi SAA/Bi@OG nanostructure with optimum charge redistribution for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202300879.

[44]

Sun, S. F.; Zhou, X.; Cong, B. W.; Hong, W. Z.; Chen, G. Tailoring the d-band centers endows (Ni x Fe1− x )2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 2020, 10, 9086–9097.

[45]

Hammer, B.; Nørskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

[46]

Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

[47]

Chen, D.; Lu, R. H.; Yu, R. H.; Dai, Y. H.; Zhao, H. Y.; Wu, D. L.; Wang, P. Y.; Zhu, J. W.; Pu, Z. H.; Chen, L. et al. Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202208642.

[48]

Zhao, X.; Liu, M. J.; Wang, Y. C.; Xiong, Y.; Yang, P. Y.; Qin, J. Q.; Xiong, X.; Lei, Y. P. Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 2022, 16, 19959–19979.

[49]

Li, C. C.; Liu, Y. W.; Zhuo, Z. W.; Ju, H. X.; Li, D.; Guo, Y. P.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. Local charge distribution engineered by schottky heterojunctions toward urea electrolysis. Adv. Energy Mater. 2018, 8, 1801775.

[50]

Yang, J.; Jing, J. F.; Zhu, Y. F. A full-spectrum porphyrin-fullerene D–A supramolecular photocatalyst with giant built-in electric field for efficient hydrogen production. Adv. Mater. 2021, 33, 2101026.

[51]

Zhai, L. L.; She, X. J.; Zhuang, L.; Li, Y. Y.; Ding, R.; Guo, X. Y.; Zhang, Y. Q.; Zhu, Y.; Xu, K.; Fan, H. J. et al. Modulating built-in electric field via variable oxygen affinity for robust hydrogen evolution reaction in neutral media. Angew. Chem., Int. Ed. 2022, 61, e202116057.

[52]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[53]

Zhang, C. H.; Wang, X. K.; Ma, Z. T.; Yao, H. X.; Liu, H. J.; Li, C.; Zhou, J.; Xu, R.; Zheng, X. S.; Wang, H. L. et al. Spin state modulation on dual Fe center by adjacent Ni sites enabling the boosted activities and ultra-long stability in Zn-air batteries. Sci. Bull. 2023, 68, 2042–2053.

[54]

Zhang, C. H.; Wang, X. K.; Song, K.; Chen, K. Y.; Dai, S. X.; Wang, H. L.; Huang, M. H. Engineering adjacent Fe3C as proton-feeding centers to single Fe sites enabling boosted oxygen reduction reaction kinetics for robust Zn-air batteries at high current densities. Nano Res. 2023, 16, 9371–9378.

[55]

Wang, Y. X.; Zhang, C. H.; Wang, X. K.; Duan, J. R.; Tong, K. C.; Dai, S. X.; Chu, L.; Huang, M. H. Engineering carbon-chainmail-shell coated Co9Se8 nanoparticles as efficient and durable catalysts in seawater-based Zn-air batteries. Acta Phys.—Chim. Sin. 2024, 40, 2305004.

[56]

Qiao, L.; Wang, X. K.; Xu, R.; Zhang, C. H.; Chen, K. Y.; Tong, K. C.; Wang, H. L.; Dai, S. X.; Chu, L.; Huang, M. H. Nitrogen-doped carbon shell armored “Janus” Co/Co9S8 heterojunction as robust bi-functional oxygen reduction reaction/oxygen evolution reaction catalysts in seawater-based rechargeable Zn-air batteries. Mater. Today Energy 2023, 37, 101398.

[57]

Li, J.; Zhan, G. M.; Yu, Y.; Zhang, L. Z. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 2016, 7, 11480.

[58]

Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.

[59]

Zhang, C.; Luo, Y. T.; Tan, J. Y.; Yu, Q. M.; Yang, F. N.; Zhang, Z. Y.; Yang, L. S.; Cheng, H. M.; Liu, B. L. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 2020, 11, 3724.

[60]

Wang, Y. H.; Li, S. N.; Zhou, R. Y.; Zheng, S. S.; Zhang, Y. J.; Dong, J. C.; Yang, Z. L.; Pan, F.; Tian, Z. Q.; Li, J. F. In situ electrochemical Raman spectroscopy and ab initio molecular dynamics study of interfacial water on a single-crystal surface. Nat. Protoc. 2023, 18, 883–901

[61]

Yu, W. H.; Zhang, Y. Y.; Qin, Y. N.; Zhang, D.; Liu, K.; Bagliuk, G. A.; Lai, J. P.; Wang, L. High-density frustrated lewis pair for high-performance hydrogen evolution. Adv. Energy Mater. 2023, 13, 2203136.

[62]

Hagemann, H.; Moyer, R. O. Raman spectroscopy studies on M2RuH6 where M = Ca, Sr and Eu. J. Alloys Compd. 2002, 330–332, 296–300

[63]

Chen, J. D.; Chen, C. H.; Qin, M. K.; Li, B.; Lin, B. B.; Mao, Q.; Yang, H. B.; Liu, B.; Wang, Y. Reversible hydrogen spillover in Ru-WO3− x enhances hydrogen evolution activity in neutral pH water splitting. Nat. Commun. 2022, 13, 5382.

[64]

Wen, Q. L.; Duan, J. Y.; Wang, W. B.; Huang, D. J.; Liu, Y. W.; Shi, Y. L.; Fang, J. K.; Nie, A. M.; Li, H. Q.; Zhai, T. Y. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem., Int. Ed. 2022, 61, e202206077.

[65]

Yang, C. M.; Zhou, L. H.; Wang, C. T.; Duan, W.; Zhang, L.; Zhang, F. C.; Zhang, J. J.; Zhen, Y. Z.; Gao, L. J.; Fu, F. et al. Large-scale synthetic Mo@(2H-1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater. Appl. Catal. B: Environ. 2022, 304, 120993.

[66]

Tong, X. P.; Zhao, Y.; Zhuo, Z. W.; Yang, Z. H.; Wang, S. Z.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Dual-regulation of defect sites and vertical conduction by spiral domain for electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202112953.

[67]

Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39.

[68]

Liu, D.; Liu, J. C.; Cai, W. Z.; Ma, J.; Yang, H. B.; Xiao, H.; Li, J.; Xiong, Y. J.; Huang, Y. Q.; Liu, B. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 2019, 10, 1779.

[69]

Li, F. S.; Yang, H.; Zhuo, Q. M.; Zhou, D. H.; Wu, X. J.; Zhang, P. L.; Yao, Z. Y.; Sun, L. C. A Cobalt@cucurbit[5]uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2021, 60, 1976–1985.

[70]

Dai, Q. Z.; Wang, L.; Wang, K. X.; Sang, X. H.; Li, Z. J.; Yang, B.; Chen, J. M.; Lei, L. C.; Dai, L. M.; Hou, Y. Accelerated water dissociation kinetics by electron-enriched cobalt sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2109556.

[71]

Yan, P.; Yang, T.; Lin, M. X.; Guo, Y. N.; Qi, Z. P.; Luo, Q. Q.; Yu, X. Y. “One stone five birds” plasma activation strategy synergistic with Ru single atoms doping boosting the hydrogen evolution performance of metal hydroxide. Adv. Funct. Mater. 2023, 33, 2301343.

[72]

Zhang, Y.; Ma, C. Q.; Zhu, X. J.; Qu, K. Y.; Shi, P. D.; Song, L. Y.; Wang, J.; Lu, Q. P.; Wang, A. L. Hetero-interface manipulation in MoO x @Ru to evoke industrial hydrogen production performance with current density of 4000 mA·cm−2. Adv. Energy Mater. 2023, 13, 2301492.

[73]

Pasquini, C.; Zaharieva, I.; González-Flores, D.; Chernev, P.; Mohammadi, M. R.; Guidoni, L.; Smith, R. D. L.; Dau, H. H/D isotope effects reveal factors controlling catalytic activity in Co-based oxides for water oxidation. J. Am. Chem. Soc. 2019, 141, 2938–2948.

[74]

Dai, J.; Zhu, Y. L.; Chen, Y.; Wen, X.; Long, M. C.; Wu, X. H.; Hu, Z. W.; Guan, D. Q.; Wang, X. X.; Zhou, C. et al. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat. Commun. 2022, 13, 1189.

[75]

Yuan, Z. K.; Li, J.; Yang, M. J.; Fang, Z. S.; Jian, J. H.; Yu, D. S.; Chen, X. D.; Dai, L. M. Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: Dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 4972–4979.

[76]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[77]

Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.

[78]

Wang, X. K.; Zhou, X. K.; Li, C.; Yao, H. X.; Zhang, C. H.; Zhou, J.; Xu, R.; Chu, L.; Wang, H. L.; Gu, M. et al. Asymmetric Co-N3P1 trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system. Adv. Mater. 2022, 34, 2204021.

[79]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

File
6520_ESM.pdf (5.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2023
Revised: 25 January 2024
Accepted: 28 January 2024
Published: 22 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22279124 and 52261145700), Shandong Province Natural Science Foundation (No. ZR2022ZD30), and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Nos. NRF-2020R1A2C3004146 and RS-2023-00235596).

Return