AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Novel strategy of multidimensional information encryption via multi-color carbon dots aggregation-induced emission

Liu Ding1,2Xilang Jin1( )Yuchong Gao3Shouwang Kang2Haiyan Bai1Xuehao Ma1Taotao Ai2Hongwei Zhou1Weixing Chen1( )
Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices Engineering Research Center of Light Stabilizers for Polymer Materials Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
School of Material Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia 19104, USA
Show Author Information

Graphical Abstract

Four kinds of novel multicolor CDs (M-CDs) with aggregation-induced emission (AIE) effect were successfully synthesized via an eco-friendly, low-cost one-pot solvothermal method. The multi-color emission fluorescence combined with the AIE effect make M-CDs a promising candidate for various encryption techniques, allowing for efficient and secure communication.

Abstract

Carbon dots (CDs) with aggregation-induced emission (AIE) have sparked significant interest in multidimensional anti-counterfeiting due to their exceptional fluorescence properties. However, the preparation of AIE CDs with multicolor solid-state fluorescence remains a formidable challenge due to its complicated construction. In the present work, a novel class of multicolor AIE CDs (M-CDs) were fabricated using selected precursor (salicylic acid, thiosalicylic acid, and 2,2'-dithiodibenzoic acid), with an eco-friendly, low-cost one-pot solvothermal method. In the dilute organic solution, M-CDs manifested blue emission, but upon aggregation in the presence of water, the red, yellow, green, and blue emissions were displayed due to the AIE effect. Structural analysis, coupled with theoretical calculations, revealed that the increase in the size of sp2 domains would lower the Eg and cause a red-shift emission wavelength. Significantly, the continuous emission of M-CDs from blue to red can be utilized as ink for multimode printing, enabling the creation of a variety of school badges and quick response codes. These findings hold promising implications for multi-information encryption applications.

Electronic Supplementary Material

Download File(s)
12274_2024_6519_MOESM1_ESM.pdf (4.2 MB)

References

[1]

Arppe, R.; Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 2017, 1, 0031.

[2]

Andréasson, J.; Pischel, U. Molecules for security measures: From keypad locks to advanced communication protocols. Chem. Soc. Rev. 2018, 47, 2266–2279.

[3]

Zhang, Y. Q.; Li, M. Y.; Lu, S. Y. Rational design of covalent bond engineered encapsulation structure toward efficient, long-lived multicolored phosphorescent carbon dots. Small. 2023, 19, e2206080.

[4]

Zhao, K. T.; Liu, F.; Sun, H. C.; Xia, P. F.; Qu, J. F.; Lu, C. G.; Zong, S. F.; Zhang, R.; Xu, S. H.; Wang, C. L. A novel ion species- and ion concentration-dependent anti-counterfeiting based on ratiometric fluorescence sensing of CDs@MOF-nanofibrous films. Small. 2023, 20, 2305211.

[5]

Liu, J. J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020, 6, 2179–2195.

[6]

Wang, H. L.; Ai, L.; Song, H. Q.; Song, Z. Q.; Yong, X.; Qu, S. N.; Lu, S. Y. Innovations in the solid-state fluorescence of carbon dots: Strategies, optical manipulations, and applications. Adv. Funct. Mater. 2023, 33, 2303756.

[7]

Wang, B. Y.; Waterhouse, G. I. N.; Lu, S. Y. Carbon dots: Mysterious past, vibrant present, and expansive future. Trends Chem. 2023, 5, 76–87.

[8]

Shen, J.; Zheng, X. J.; Lin, L. L.; Xu, H. J.; Xu, G. H. Reaction time-controlled synthesis of multicolor carbon dots for white light-emitting diodes. ACS Appl. Nano Mater. 2023, 6, 2478–2490.

[9]

Fu, R.; Song, H. Q.; Liu, X. J.; Zhang, Y. Q.; Xiao, G. J.; Zou, B.; Waterhouse, G. I. N.; Lu, S. Y. Disulfide crosslinking-induced aggregation: Towards solid-state fluorescent carbon dots with vastly different emission colors. Chin. J. Chem. 2023, 41, 1007–1014.

[10]

Wang, C.; Huang, J. F.; He, Y. M.; Ran, G. X.; Song, Q. J. Preparation of multicolor carbon dots with thermally turn-on fluorescence for multidimensional information encryption. Chin. Chem. Lett. 2023, 35, 108420.

[11]

Lee, U.; Heo, E.; Le, T.-H.; Lee, H.; Kim, S.; Lee, S.; Jo, H.; Yoon, H. Carbon dots for epoxy curing: Anti-forgery patterns with long-term luminescent stability. Chem. Eng. J. 2021, 405, 126988.

[12]

Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316.

[13]

Xu, Y. L.; Wang, C.; Jiang, T.; Ran, G. X.; Song, Q. J. Cadmium induced aggregation of orange-red emissive carbon dots with enhanced fluorescence for intracellular imaging. J. Hazard. Mater. 2022, 427, 128092.

[14]

Tang, B. Z.; Zhan, X. W.; Gui, Yu, G.; Lee, P. P. S.; Liu, Y. Q.; Zhu, D. B. Efficient blue emission from siloles. J. Mater. Chem. C. 2001, 11, 2974–2978.

[15]

Liu, Y. S.; Yang, H. Y.; Wang, Y.; Ma, C. H.; Luo, S.; Wu, Z. W.; Zhang, Z. S.; Li, W.; Liu, S. X. Fluorescent thermochromic wood-based composite phase change materials based on aggregation-induced emission carbon dots for visual solar-thermal energy conversion and storage. Chem. Eng. J. 2021, 424, 130426.

[16]

Zhao, Z.; Zhang, H. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: New vistas at the aggregate level. Angew. Chem., Int. Ed. 2020, 59, 9888–9907.

[17]

Kang, C. Y.; Tao, S. Y.; Yang, F.; Yang, B. Aggregation and luminescence in carbonized polymer dots. Aggregate. 2022, 3, e169.

[18]

Yang, H. Y.; Liu, Y. L.; Guo, Z. Y.; Lei, B. F.; Zhuang, J. L.; Zhang, X. J.; Liu, Z. M.; Hu, C. F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789.

[19]

Chen, S.; Liu, J.-W.; Chen, M.-L.; Chen, X.-W.; Wang, J.-H. J. C. C. Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation. Chem. Commun. 2012, 48, 7637–7639.

[20]

Li, X.; Zhu, S. J.; Xu, B.; Ma, K.; Zhang, J. H.; Yang, B.; Tian, W. J. Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale. 2013, 5, 7776–7779.

[21]

Ai, L.; Song, Z. Q.; Nie, M. J.; Yu, J. K.; Liu, F. K.; Song, H. Q.; Zhang, B.; Waterhouse, G. I. N.; Lu, S. Y. Solid-state fluorescence from carbon dots widely tunable from blue to deep red through surface ligand modulation. Angew. Chem., Int. Ed. 2022, 62, e202217822.

[22]

Ba, X. X.; Zhang, L.; Yin, Y. L.; Jiang, F. L.; Jiang, P.; Liu, Y. Luminescent carbon dots with concentration-dependent emission in solution and yellow emission in solid state. J. Colloid Interface Sci. 2020, 565, 77–85.

[23]

Xu, X. K.; Mo, L. Q.; Li, Y. D.; Pan, X. Q.; Hu, G. Q.; Lei, B. F.; Zhang, X. J.; Zheng, M. T.; Zhuang, J. L.; Liu, Y. L. et al. Construction of carbon dots with color-tunable aggregation-induced emission by nitrogen-induced intramolecular charge transfer. Adv. Mater. 2021, 33, 2104872.

[24]

Gong, X.; Xu, Q. Q.; Li, J. R.; Ma, Y.; Li, X. Y.; Wu, W. Z.; Wang, H. X. Hydrophobic Mn-doped solid-state red-emitting carbon nanodots with aie effect and their hydrogel composites for color-changing anticounterfeiting. Small, in press, DOI: 10.1002/smll.202304673.

[25]

Wang, J. L.; Zheng, J. X.; Yang, Y. Z.; Liu, X. G.; Qiu, J. S.; Tian, Y. Tunable full-color solid-state fluorescent carbon dots for light emitting diodes. Carbon. 2022, 190, 22–31.

[26]

Guo, J. Z.; Lu, Y. S.; Xie, A. Q.; Li, G.; Liang, Z. B.; Wang, C. F.; Yang, X. N.; Chen, S. Yellow-emissive carbon dots with high solid-state photoluminescence. Adv. Funct. Mater. 2022, 32, 2110393.

[27]

Mei, Q. S.; Zhang, K.; Guan, G. J.; Liu, B. H.; Wang, S. H.; Zhang, Z. P. Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem. Commun. 2010, 46, 7319–7321.

[28]

Tang, L. B.; Ji, R. B.; Cao, X. K.; Lin, J. Y.; Jiang, H. X.; Li, X. M.; Teng, K. S.; Luk, C. M.; Zeng, S. J.; Hao, J. H. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012, 6, 5102–5110.

[29]

Dai, R. Y.; Chen, X. P.; Hu, Y. P. Ratiometric fluorescence determination of carbon disulfide in water using surface functionalized carbon dots. Sens. Actuators B Chem. 2023, 382, 133499.

[30]

Yu, L. D.; Wang, Y.; Li, K.; Li, X. T.; He, M. Y.; Chen, C.; Li, F. S.; Liang, B.; Li, L.; Gu, N. et al. Metformin-based carbon dots based on biguanide functional groups for simultaneous chelation of copper ions and inhibitable colorectal cancer therapy. Carbon. 2023, 212, 118095.

[31]

Wang, C.; He, Y. M.; Huang, J. F.; Sui, L.; Ran, G. X.; Zhu, H.; Song, Q. J. Intramolecular hydrogen bond-tuned thermal-responsive carbon dots and their application to abnormal body temperature imaging. J. Colloid Interface Sci. 2023, 634, 221–230.

[32]

Guo, H. Z.; Zhang, X.; Chen, Z. Y.; Zhang, L.; Wang, L.; Xu, J.; Wu, M. H. High-energy short-wave blue light conversion films via carbon quantum dots for preventing retinal photochemical damage. Carbon 2022, 199, 431–438.

[33]

Paul, S.; Hazra, S.; Banerjee, A. Aggregation-Induced Modulation of the Optoelectronic Properties of Carbon Dots and Removal of Cd2+ Ions with Sustainable Use in Photocurrent Generation. ACS Sustain. Chem. Eng. 2021, 9, 12912–12921.

[34]

Hua, J. H.; Hua, P.; Qin, K. H. Highly fluorescent N, F co-doped carbon dots with tunable light emission for multicolor bio-labeling and antibacterial applications. J. Hazard. Mater. 2023, 459, 132331.

[35]

Ai, L.; Yang, Y. S.; Wang, B. Y.; Chang, J. B.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Sci Bull. 2021, 66, 839–856.

[36]

Zhou, F.; Gu, P. Y.; Luo, Z. P.; Bisoyi, H. K.; Ji, Y. J.; Li, Y. Y.; Xu, Q. F.; Li, Q.; Lu, J. M. Unexpected organic hydrate luminogens in the solid state. Nat. Commun. 2021, 12, 2339.

[37]

Wang, L. J.; Qin, Y.; Cheng, Y.; Fan, W. W.; Yang, S. X.; Zheng, L. Y.; Cao, Q. E. Intermolecular hydrogen bonds induce restriction of access to the dark state for triggering aggregation-induced emission. J. Mater. Chem. C 2022, 10, 5356–5363.

[38]

Park, J. Y.; Rama Raju, G. S.; Hong, W. T.; Yang, H. K. Photobleach effect of multi-color emitting carbon dots for UV-light sensing. Chem. Eng. J. 2023, 464, 142643.

[39]

Li, H. J.; Chen, Y. L.; Wang, H.; Wang, H.; Liao, Q. B.; Han, S. C.; Li, Y.; Wang, D.; Li, G. S.; Deng, Y. H. Amide (n, π*) transitions enabled clusteroluminescence in solid-state carbon dots. Adv. Funct. Mater. 2023, 33, 202302862.

[40]

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

[41]

Ding, L.; Jin, X. L.; Gao, Y. C.; Wu, J. L.; Ai, T. T.; Zhou, H. W.; Chen, X. Y.; Zhang, X. Y.; Chen, W. X. Facile preparation strategy of novel carbon dots with aggregation-induced emission and room-temperature phosphorescence characteristics. Adv. Opt. Mater. 2022, 11, 2202349.

[42]

Yang, L. J.; Liu, S. C.; Quan, T.; Tao, Y. Q.; Tian, M.; Wang, L. C.; Wang, J. J.; Wang, D. D.; Gao, D. Sulfuric-acid-mediated synthesis strategy for multi-colour aggregation-induced emission fluorescent carbon dots: Application in anti-counterfeiting, information encryption, and rapid cytoplasmic imaging. J. Colloid Interface Sci. 2022, 612, 650–663.

[43]

Wu, M. Y.; Li, J. R.; Wu, Y. Z.; Gong, X.; Wu, M. Design of a synthetic strategy to achieve enhanced fluorescent carbon dots with sulfur and nitrogen codoping and its multifunctional applications. Small. 2023, 19, 2302764.

[44]

Ding, H.; Zhao, R.; Zhang, Z. H.; Yang, J. J.; Wang, Z.; Xiao, L. L.; Li, X. H.; He, X. J.; Xiong, H. M. Kilogram-scale synthesis of carbon dots with high-efficiency full-color solid-state fluorescence using an aggregation-induced emission strategy. Chem. Eng. J. 2023, 476, 146405.

Nano Research
Pages 5680-5687
Cite this article:
Ding L, Jin X, Gao Y, et al. Novel strategy of multidimensional information encryption via multi-color carbon dots aggregation-induced emission. Nano Research, 2024, 17(6): 5680-5687. https://doi.org/10.1007/s12274-024-6519-3
Topics:

703

Views

10

Crossref

8

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 09 November 2023
Revised: 17 January 2024
Accepted: 28 January 2024
Published: 04 March 2024
© Tsinghua University Press 2024
Return