Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Piezoelectric semiconductors bear the bifunctional photocatalysis and piezocatalysis, while the absent or weak internal charge driving force severely restricts its catalytic activity. Developing polarization strategy is desirable, and particularly understanding its mechanism from a microscopic perspective remains scanty. Herein, we report a secondary recrystallization approach to achieving the simultaneous micro- and macroscopic polarization enhancement on Bi2WO6 nanosheets for boosting piezo-photocatalytic oxygen activation, and unravel the mechanism at an atom-level. The secondary recrystallization process not only results in a strengthened distortion of [WO6] octahedra with distortion index enhancement by ~ 20% for a single octahedron, but also enables lateral crystal growth of nanosheets along the ab plane (av. 50 to 180 nm), which separately allows the rise in dipole moment of unit cell (e.g., 1.63 D increase along a axis) and the stacking of the distorted [WO6] octahedron to accumulate the unit cell dipole, collectively contributing to the considerably strengthened spontaneous polarization and piezoelectricity. Besides, exposure of large-area {001} front facet enables more efficient capture and conversion of stress into piezo-potential. Therefore, the well-recrystallized Bi2WO6 nanosheets exhibit considerably promoted piezo-photocatalytic reactive oxygen species generation, given the decreased specific surface area. This work presents a feasible methodology to regulate inside-out polarization for guiding carriers transfer behavior, and may advance the solid understanding on the intrinsic mechanism.
Hellwig, M. The chemistry of protein oxidation in food. Angew. Chem., Int. Ed. 2019, 58, 16742–16763.
Cheng, Y.; Kong, X. P.; Chang, Y.; Feng, Y. L.; Zheng, R. X.; Wu, X. Q.; Xu, K. Q.; Gao, X. F.; Zhang, H. Y. Spatiotemporally synchronous oxygen self-supply and reactive oxygen species production on Z-scheme heterostructures for hypoxic tumor therapy. Adv. Mater. 2020, 32, 1908109.
Wang, M.; Chang, M. Y.; Li, C. X.; Chen, Q.; Hou, Z. Y.; Xing, B. G.; Lin, J. Tumor-microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation/chemodynamic/Immunotherapy. Adv. Mater. 2022, 34, 2106010.
Kalyane, D.; Choudhary, D.; Polaka, S.; Goykar, H.; Karanwad, T.; Rajpoot, K.; Kumar Tekade, R. Reactive oxygen nano-generators for cancer therapy. Prog. Mater Sci. 2022, 130, 100974.
Xie, S. H.; Liu, L. P.; Lu, Y.; Wang, C. Y.; Cao, S. F.; Diao, W. J.; Deng, J. G.; Tan, W.; Ma, L.; Ehrlich, S. N. et al. Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation. J. Am. Chem. Soc. 2022, 144, 21255–21266.
Wang, Z. S.; Cheng, M.; Liu, Y.; Wu, Z. W.; Gu, H. Y.; Huang, Y.; Zhang, L. Z.; Liu, X. Dual-atomic-site catalysts for molecular oxygen activation in heterogeneous thermo-/electro-catalysis. Angew. Chem., Int. Ed. 2023, 62, e202301483.
Mao, Y. S.; Wang, P. F.; Li, L. N.; Chen, Z. W.; Wang, H. T.; Li, Y.; Zhan, S. H. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2- x for efficient molecular-oxygen activation. Angew. Chem., Int. Ed. 2020, 59, 3685–3690.
Long, R.; Huang, H.; Li, Y. P.; Song, L.; Xiong, Y. J. Palladium-based nanomaterials: A platform to produce reactive oxygen species for catalyzing oxidation reactions. Adv. Mater. 2015, 27, 7025–7042.
Li, Q.; Li, F. T. Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions. Chem. Eng. J. 2021, 421, 129915.
Zhao, Y. B.; Ma, W. H.; Li, Y.; Ji, H. W.; Chen, C. C.; Zhu, H. Y.; Zhao, J. C. The surface-structure sensitivity of dioxygen activation in the anatase-photocatalyzed oxidation reaction. Angew. Chem., Int. Ed. 2012, 51, 3188–3192.
Pan, C. Q.; Wang, C. Y.; Zhao, X. Y.; Xu, P. Y.; Mao, F. H.; Yang, J.; Zhu, Y. H.; Yu, R. H.; Xiao, S. Y.; Fang, Y. R. et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne. J. Am. Chem. Soc. 2022, 144, 4942–4951.
Sun, X. S.; Luo, X.; Zhang, X. D.; Xie, J. F.; Jin, S.; Wang, H.; Zheng, X. S.; Wu, X. J.; Xie, Y. Enhanced superoxide generation on defective surfaces for selective photooxidation. J. Am. Chem. Soc. 2019, 141, 3797–3801.
Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater. 2018, 28, 1705407.
Zhao, K.; Zhang, L. Z.; Wang, J. J.; Li, Q. X.; He, W. W.; Yin, J. J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2013, 135, 15750–15753.
Wang, S. Y.; Ding, X.; Zhang, X. H.; Pang, H.; Hai, X.; Zhan, G. M.; Zhou, W.; Song, H.; Zhang, L. Z.; Chen, H. et al. In situ carbon homogeneous doping on ultrathin bismuth molybdate: A dual-purpose strategy for efficient molecular oxygen activation. Adv. Funct. Mater. 2017, 27, 1703923.
Zhang, D. P.; Li, Y. X.; Wang, P. F.; Qu, J. Y.; Zhan, S. H.; Li, Y. Regulating spin polarization through cationic vacancy defects in Bi4Ti3O12 for enhanced molecular oxygen activation. Angew. Chem., Int. Ed. 2023, 62, e202303807.
Di, G. L.; Wang, L. L.; Li, X. D.; Zhao, X. L.; Yang, G. P.; Huang, L.; Chen, Z. F.; Crittenden, J. Metallic Bi and oxygen vacancy dual active sites enable efficient oxygen activation: Facet-dependent effect and interfacial synergy. Appl. Catal. B Environ 2023, 325, 122349.
Dai, B. Y.; Biesold, G. M.; Zhang, M.; Zou, H. Y.; Ding, Y.; Wang, Z. L.; Lin, Z. Q. Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chem. Soc. Rev. 2021, 50, 13646–13691.
Zhang, L. X.; Wang, K.; Jia, Y. Q.; Fang, L. P.; Han, C.; Li, J. Q.; Shao, Z. P.; Li, X. Y.; Qiu, J. S.; Liu, S. M. Self-assembled LaFeO3/ZnFe2O4/La2O3 ultracompact hybrids with enhanced piezo-phototronic effect for oxygen activation in ambient conditions. Adv. Funct. Mater. 2022, 32, 2205121.
Liu, W.; Wang, P. F.; Ao, Y. H.; Chen, J.; Gao, X.; Jia, B. H.; Ma, T. Y. Directing charge transfer in a chemical-bonded BaTiO3@ReS2 schottky heterojunction for piezoelectric enhanced photocatalysis. Adv. Mater. 2022, 34, 2202508.
Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y. J. Nanochemistry-derived Bi2WO6 nanostructures: Towards production of sustainable chemicals and fuels induced by visible light. Chem. Soc. Rev. 2014, 43, 5276–5287.
Yi, H.; Qin, L.; Huang, D. L.; Zeng, G. M.; Lai, C.; Liu, X. G.; Li, B. S.; Wang, H.; Zhou, C. Y.; Huang, F. L. et al. Nano-structured bismuth tungstate with controlled morphology: Fabrication, modification, environmental application and mechanism insight. Chem. Eng. J. 2019, 358, 480–496.
Hu, J. F.; Zhang, J. Z.; Wang, X. H.; Luo, J.; Zhang, Z. J.; Shen, Z. J. A general mechanism of grain growth-Ⅱ: Experimental. J. Materiomics 2021, 7, 1014–1021.
Zhou, Y. G.; Zhang, Y. F.; Lin, M. S.; Long, J. L.; Zhang, Z. Z.; Lin, H. X.; Wu, J. C. S.; Wang, X. X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340.
Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.
Wang, C. Y.; Hu, C.; Chen, F.; Li, H. T.; Zhang, Y. H.; Ma, T. Y.; Huang, H. W. Polar layered bismuth-rich oxyhalide piezoelectrics Bi4O5X2 (X = Br, I): Efficient piezocatalytic pure water splitting and interlayer anion-dependent activity. Adv. Funct. Mater. 2023, 33, 2301144.
Hu, C.; Huang, H. W.; Chen, F.; Zhang, Y. H.; Yu, H.; Ma, T. Y. Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 2020, 30, 1908168.
Ren, P.; Zhang, T.; Jain, N.; Ching, H. Y. V.; Jaworski, A.; Barcaro, G.; Monti, S.; Silvestre-Albero, J.; Celorrio, V.; Chouhan, L. et al. An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the water oxidation reaction (WOR). J. Am. Chem. Soc. 2023, 145, 16584–16596.
Wang, K.; Han, C.; Li, J. Q.; Qiu, J. S.; Sunarso, J.; Liu, S. M. The mechanism of piezocatalysis: Energy band theory or screening charge effect. Angew. Chem., Int. Ed. 2022, 61, e202110429.
Langford, J. I.; Wilson, A. J. C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst. 1978, 11, 102–113.
Holzwarth, U.; Gibson, N. The Scherrer equation versus the 'Debye-Scherrer equation'. Nat. Nanotechnol. 2011, 6, 534.
Ma, H. Q.; Yang, W. Y.; Gao, S.; Geng, W. R.; Lu, Y. L.; Zhou, C. L.; Shang, J. K.; Shi, T.; Li, Q. Superior photopiezocatalytic performance by enhancing spontaneous polarization through post-synthesis structure distortion in ultrathin Bi2WO6 nanosheet polar photocatalyst. Chem. Eng. J. 2023, 455, 140471.
Hu, C.; Chen, F.; Huang, H. W. Ferroelectric polarization modulated facet-selective charge separation in Bi4NbO8Cl single crystal for boosting visible-light driven bifunctional water splitting. Angew. Chem., Int. Ed. 2023, 62, e202312895.
Zhang, L. W.; Wang, Y. J.; Cheng, H. Y.; Yao, W. Q.; Zhu, Y. F. Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts. Adv. Mater. 2009, 21, 1286–1290.
Zhang, L. W.; Man, Y.; Zhu, Y. F. Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst. ACS Catal. 2011, 1, 841–848.
Ma̧czka, M.; Macalik, L.; Hermanowicz, K.; Kȩpiński, L.; Tomaszewski, P. Phonon properties of nanosized bismuth layered ferroelectric material-Bi2WO6. J. Raman Spectrosc. 2010, 41, 1059–1066.
Djani, H.; Hermet, P.; Ghosez, P. First-principles characterization of the P21 ab ferroelectric phase of Aurivillius Bi2WO6. J. Phys. Chem. C 2014, 118, 13514–13524.
Lu, C. H.; Li, X. R.; Wu, Q.; Li, J.; Wen, L.; Dai, Y.; Huang, B. B.; Li, B. J.; Lou, Z. Z. Constructing surface plasmon resonance on Bi2WO6 to boost high-selective CO2 reduction for methane. ACS Nano 2021, 15, 3529–3539.
Wang, Y. H.; Hu, J. C.; Ge, T.; Chen, F.; Lu, Y.; Chen, R. H.; Zhang, H. J.; Ye, B. J.; Wang, S. Y.; Zhang, Y. H. et al. Gradient cationic vacancies enabling inner-to-outer tandem homojunctions: Strong local internal electric field and reformed basic sites boosting CO2 photoreduction. Adv. Mater. 2023, 35, 2302538.
Wu, L. K.; Tang, L. M.; Zhai, Y. Z.; Zhang, Y. L.; Sun, J. J.; Hu, D.; Pan, Z. B.; Su, Z.; Zhang, Y.; Liu, J. J. Enhanced energy-storage performance in BNT-based lead-free dielectric ceramics via introducing SrTi0.875Nb0.1O3. J. Materiomics 2022, 8, 537–544.
Liu, S.; Feng, W. W.; Li, J. H.; Zhao, C. C.; Hu, C.; He, B.; Bao, Z. D.; Luan, X. Z. Achieving high energy storage density and efficiency simultaneously in Sr(Nb0.5Al0.5)O3 modified BiFeO3 based lead-free ceramics. Chem. Eng. J. 2023, 451, 138916.
Yang, B. B.; Zhang, Q. H.; Huang, H. B.; Pan, H.; Zhu, W. X.; Meng, F. Q.; Lan, S.; Liu, Y. Q.; Wei, B.; Liu, Y. Q. et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy 2023, 8, 956–964.
Qu, H. W.; Li, Y. C. Giant enhancement of exciton radiative lifetime by ferroelectric polarization: The case of monolayer TiOCl2. Phys. Rev. B 2023, 107, 235407.
Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403.
Xing, Z.; Hu, J.; Ma, M.; Lin, H.; An, Y. M.; Liu, Z. H.; Zhang, Y.; Li, J. Y.; Yang, S. H. From one to two: In situ construction of an ultrathin 2D-2D closely bonded heterojunction from a single-phase monolayer nanosheet. J. Am. Chem. Soc. 2019, 141, 19715–19727.
Yang, J.; Wang, F.; Guo, J. F.; Wang, Y. R.; Jiang, C. X.; Li, S. H.; Cai, Y. C.; Zhan, X. Y.; Liu, X. F.; Cheng, Z. H. et al. Ultrasensitive ferroelectric semiconductor phototransistors for photon-level detection. Adv. Funct. Mater. 2022, 32, 2205468.
Zhong, Y.; Wu, C. L.; Chen, D. M.; Zhang, J. Z.; Feng, Y. M.; Xu, K.; Hao, W. C.; Ding, H.; Lv, G. C.; Du, Y. et al. Design of lateral and vertical Bi4O5I2/BiOCl heterojunctions with different charge migration pathway for efficient photoredox activity. Appl. Catal. B Environ 2023, 329, 122554.