Journal Home > Volume 17 , Issue 6

Stretchable hybrid systems have been attracting tremendous attention for their essential role in soft robotics, on-skin electronics, and implantable devices. Both rigid and soft functional modules are typically required in those devices. Consequently, ensuring stable electrical contact between rigid and soft modules is a vital part. Here, we propose a simple, universal, and scalable strategy for the stretchable hybrid system through a highly precise printable liquid metal particle-based conductor and adhesive fluorine rubber substrate. The properties of liquid metal particle-based conductors could be easily tuned to realize high-precision patterning, large-scale printing, and the ability to print on various substrates. Additionally, the fluorine rubber substrate could form strong interfacial adhesion with various components and materials through simply pressing and heating, hence enabling stable electrical contact. Furthermore, we prepared a stretchable hybrid light-emitting diode (LED) display system and employed it in on-skin visualization of pressure levels, which perfectly combined rigid and soft modules, thus demonstrating the promising potential applications in complex multifunctional stretchable hybrid systems for emerging technologies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High precision patternable liquid metal based conductor and adhesive substrate enabled stretchable hybrid systems

Show Author's information Runhui Zhou1,2,§Jiaoya Huang1,§Zemin Li1,2Yushu Wang3Ziyu Chen3Caofeng Pan1,2,4( )
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Institute of Atomic Manufacturing, Beihang University, Beijing 100191, China

§ Runhui Zhou and Jiaoya Huang contributed equally to this work.

Abstract

Stretchable hybrid systems have been attracting tremendous attention for their essential role in soft robotics, on-skin electronics, and implantable devices. Both rigid and soft functional modules are typically required in those devices. Consequently, ensuring stable electrical contact between rigid and soft modules is a vital part. Here, we propose a simple, universal, and scalable strategy for the stretchable hybrid system through a highly precise printable liquid metal particle-based conductor and adhesive fluorine rubber substrate. The properties of liquid metal particle-based conductors could be easily tuned to realize high-precision patterning, large-scale printing, and the ability to print on various substrates. Additionally, the fluorine rubber substrate could form strong interfacial adhesion with various components and materials through simply pressing and heating, hence enabling stable electrical contact. Furthermore, we prepared a stretchable hybrid light-emitting diode (LED) display system and employed it in on-skin visualization of pressure levels, which perfectly combined rigid and soft modules, thus demonstrating the promising potential applications in complex multifunctional stretchable hybrid systems for emerging technologies.

Keywords: liquid metal, interfacial adhesion, stretchable hybrid systems, high precision

References(59)

[1]

Hegde, C.; Su, J. T.; Tan, J. M. R.; He, K.; Chen, X. D.; Magdassi, S. Sensing in soft robotics. ACS Nano 2023, 17, 15277–15307.

[2]

Liu, Y.; Bao, R. R.; Tao, J.; Li, J.; Dong, M.; Pan, C. F. Recent progress in tactile sensors and their applications in intelligent systems. Sci. Bull. 2020, 65, 70–88.

[3]

Bao, R. R.; Tao, J.; Zhao, J.; Dong, M.; Li, J.; Pan, C. F. Integrated intelligent tactile system for a humanoid robot. Sci. Bull. 2023, 68, 1027–1037.

[4]

Zhou, Q. T.; Deng, S. J.; Gao, A. L.; Wang, B. Y.; Lai, J. X.; Pan, J.; Huang, L.; Pan, C. F.; Meng, G. W.; Xia, F. Triboelectric nanogenerator with dynamic electrode for geological disaster and fall-down self-powered alarm system. Adv. Funct. Mater. 2023, 33, 2306619.

[5]

Jiang, Y.; Ji, S. B.; Sun, J.; Huang, J. P.; Li, Y. H.; Zou, G. J.; Salim, T.; Wang, C. X.; Li, W. L.; Jin, H. R. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023, 614, 456–462.

[6]

Zhang, Y. C.; Tan, Y. R.; Lao, J. Z.; Gao, H. J.; Yu, J. Hydrogels for flexible electronics. ACS Nano 2023, 17, 9681–9693.

[7]

Li, J.; Bao, R. R.; Tao, J.; Dong, M.; Zhang, Y. F.; Fu, S.; Peng, D. F.; Pan, C. F. Visually aided tactile enhancement system based on ultrathin highly sensitive crack-based strain sensors. Appl. Phys. Rev. 2020, 7, 011404.

[8]

Wu, W. Q.; Han, X.; Li, J.; Wang, X. D.; Zhang, Y. F.; Huo, Z. H.; Chen, Q. S.; Sun, X. D.; Xu, Z. S.; Tan, Y. W. et al. Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Adv. Mater. 2021, 33, 2006006.

[9]

Yu, Y.; Li, J. H.; Solomon, S. A.; Min, J. H.; Tu, J. B.; Guo, W.; Xu, C. H.; Song, Y.; Gao, W. All-printed soft human–machine interface for robotic physicochemical sensing. Sci. Robot. 2022, 7, eabn0495.

[10]

Li, J.; Yuan, Z. Q.; Han, X.; Wang, C. F.; Huo, Z. H.; Lu, Q. C.; Xiong, M. L.; Ma, X. L.; Gao, W. C.; Pan, C. F. Biologically inspired stretchable, multifunctional, and 3D electronic skin by strain visualization and triboelectric pressure sensing. Small Sci. 2022, 2, 2100083.

[11]

Tao, J.; Dong, M.; Li, L.; Wang, C. F.; Li, J.; Liu, Y.; Bao, R. R.; Pan, C. F. Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 2020, 6, 62.

[12]

Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, 1706738.

[13]

Deng, J.; Yuk, H.; Wu, J. J.; Varela, C. E.; Chen, X. Y.; Roche, E. T.; Guo, C. F.; Zhao, X. H. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 2021, 20, 229–236.

[14]

Xue, Y.; Zhang, J.; Chen, X. M.; Zhang, J. J.; Chen, G. D.; Zhang, K.; Lin, J. S.; Guo, C. F.; Liu, J. Trigger-detachable hydrogel adhesives for bioelectronic interfaces. Adv. Funct. Mater. 2021, 31, 2106446.

[15]

Li, G.; Huang, K. X.; Deng, J.; Guo, M. X.; Cai, M. K.; Zhang, Y.; Guo, C. F. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 2022, 34, 2200261.

[16]
Haque, A. B. M. T.; Ho, D. H.; Hwang, D.; Tutika, R.; Lee, C.; Bartlett, M. D. Electrically conductive liquid metal composite adhesives for reversible bonding of soft electronics. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202304101.
[17]

Song, H. L.; Luo, G. Q.; Ji, Z. Y.; Bo, R. H.; Xue, Z. G.; Yan, D. J.; Zhang, F.; Bai, K.; Liu, J. X.; Cheng, X. et al. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 2022, 8, eabm3785.

[18]

Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

[19]

Lu, N. S.; Yoon, J.; Suo, Z. G. Delamination of stiff islands patterned on stretchable substrates. Int. J. Mater. Res. 2007, 98, 717–722.

[20]

Zhao, Z. H.; Fu, H. R.; Tang, R. T.; Zhang, B. C.; Chen, Y. M.; Jiang, J. Q. Failure mechanisms in flexible electronics. Int. J. Smart Nano Mater. 2023, 14, 510–565.

[21]

Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

[22]

Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

[23]

Shyu, T. C.; Damasceno, P. F.; Dodd, P. M.; Lamoureux, A.; Xu, L. Z.; Shlian, M.; Shtein, M.; Glotzer, S. C.; Kotov, N. A. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 2015, 14, 785–789.

[24]

Zhang, Y. F.; Huo, Z. H.; Wang, X. D.; Han, X.; Wu, W. Q.; Wan, B. S.; Wang, H.; Zhai, J. Y.; Tao, J.; Pan, C. F. et al. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nat. Commun. 2020, 11, 5629.

[25]

Lacour, S. P.; Chan, D.; Wagner, S.; Li, T.; Suo, Z. G. Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 2006, 88, 204103.

[26]

Jiang, Z.; Chen, N.; Yi, Z. G.; Zhong, J. W.; Zhang, F. L.; Ji, S. B.; Liao, R.; Wang, Y.; Li, H. C.; Liu, Z. H. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 2022, 5, 784–793.

[27]

Qi, D. P.; Liu, Z. Y.; Liu, Y.; Jiang, Y.; Leow, W. R.; Pal, M.; Pan, S. W.; Yang, H.; Wang, Y.; Zhang, X. Q. et al. Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing. Adv. Mater. 2017, 29, 1702800.

[28]

Chen, S.; Hu, K. M.; Yan, S. Z.; Ma, T. J.; Deng, X. L.; Zhang, W. M.; Yin, J.; Jiang, X. S. Dynamic metal patterns of wrinkles based on photosensitive layers. Sci. Bull. 2022, 67, 2186–2195.

[29]

He, J.; Zhou, R. H.; Zhang, Y. F.; Gao, W. C.; Chen, T.; Mai, W. J.; Pan, C. F. Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite. Adv. Funct. Mater. 2022, 32, 2107281.

[30]

Jiang, Y. W.; Zhang, Z. T.; Wang, Y. X.; Li, D. L.; Coen, C. T.; Hwaun, E.; Chen, G.; Wu, H. C.; Zhong, D. L.; Niu, S. M. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 2022, 375, 1411–1417.

[31]

Huang, J.; Liu, X. H.; Du, Y. Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT:PSS thermoelectric composites. J. Materiom. 2022, 8, 1213–1217.

[32]

Du, X. J.; Yang, L. Y.; Liu, N. Recent progress on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) bioelectrodes. Small Sci. 2023, 3, 2300008.

[33]

Gao, N. W.; Pan, C. F. Intelligent ion gels: Design, performance, and applications. SmartMat 2024, 5, e1215.

[34]

Gao, N. W.; Huang, J. Y.; Chen, Z. W.; Liang, Y. G.; Zhang, L.; Peng, Z. C.; Pan, C. F. Biomimetic ion channel regulation for temperature-pressure decoupled tactile perception. Small 2024, 20, 2302440.

[35]

Ge, G.; Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020, 14, 218–228.

[36]

Zheng, L. J.; Zhu, M. M.; Wu, B. H.; Li, Z. L.; Sun, S. T.; Wu, P. Y. Conductance-stable liquid metal sheath–core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv. 2021, 7, eabg4041.

[37]

Hou, X. J.; Zhong, J. X.; Yang, C. J.; Yang, Y.; He, J.; Mu, J. L.; Geng, W. P.; Chou, X. J. A high-performance, single-electrode and stretchable piezo-triboelectric hybrid patch for omnidirectional biomechanical energy harvesting and motion monitoring. J. Materiom. 2022, 8, 958–966.

[38]

Zhu, R. Q.; Li, Z. Y.; Deng, G.; Yu, Y. H.; Shui, J. L.; Yu, R. H.; Pan, C. F.; Liu, X. F. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700.

[39]

Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.

[40]

Jung, D.; Lim, C.; Park, C.; Kim, Y.; Kim, M.; Lee, S.; Lee, H.; Kim, J. H.; Hyeon, T.; Kim, D. H. Adaptive self-organization of nanomaterials enables strain-insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 2022, 34, 2200980.

[41]

Zhou, K. K.; Zhao, Y.; Sun, X. P.; Yuan, Z. Q.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy 2020, 70, 104546.

[42]

Zhou, K. K.; Xu, W. J. H.; Yu, Y. F.; Zhai, W.; Yuan, Z. Q.; Dai, K.; Zheng, G. Q.; Mi, L. W.; Pan, C. F.; Liu, C. T. et al. Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact–noncontact sensing. Small 2021, 17, 2100542.

[43]

Yu, Z. B.; Niu, X. F.; Liu, Z. T.; Pei, Q. B. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 2011, 23, 3989–3994.

[44]

Xu, H. Y.; Tao, J.; Liu, Y.; Mo, Y. P.; Bao, R. R.; Pan, C. F. Fully fibrous large-area tailorable triboelectric nanogenerator based on solution blow spinning technology for energy harvesting and self-powered sensing. Small 2022, 18, 2202477.

[45]

Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Si, W. L.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 2020, 2020, 2038560.

[46]

Zhang, H. F.; Xuan, J. Y.; Zhang, Q.; Sun, M. L.; Jia, F. C.; Wang, X. M.; Yin, G. C.; Lu, S. Y. Strategies and challenges for enhancing performance of MXene-based gas sensors: A review. Rare Met. 2022, 41, 3976–3999.

[47]

Han, X.; Qiu, X. Y.; Zong, M.; Hao, J. H. Assembled MXene macrostructures for multifunctional polymer nanocomposites. Small Struct. 2023, 4, 2300090.

[48]

Ren, J.; Zhang, W. J.; Wang, Y. B.; Wang, Y. X.; Zhou, J.; Dai, L. M.; Xu, M. A graphene rheostat for highly durable and stretchable strain sensor. InfoMat 2019, 1, 396–406.

[49]

Niu, H. S.; Li, N.; Kim, E. S.; Shin, Y. K.; Kim, N. Y.; Shen, G. Z.; Li, Y. Advances in advanced solution-synthesis-based structural materials for tactile sensors and their intelligent applications. InfoMat 2024, 6, e12500.

[50]

Yuk, H.; Zhang, T.; Parada, G. A.; Liu, X. Y.; Zhao, X. H. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028.

[51]

Hwang, H.; Kong, M.; Kim, K.; Park, D.; Lee, S.; Park, S.; Song, H. J.; Jeong, U. Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits. Sci. Adv. 2021, 7, eabh0171.

[52]

Yuk, H.; Zhang, T.; Lin, S. T.; Parada, G. A.; Zhao, X. H. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 2016, 15, 190–196.

[53]

Saiz-Poseu, J.; Mancebo-Aracil, J.; Nador, F.; Busqué, F.; Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem., Int. Ed. 2019, 58, 696–714.

[54]

Cheng, M. J.; Shi, F.; Li, J. S.; Lin, Z. F.; Jiang, C.; Xiao, M.; Zhang, L. Q.; Yang, W. T.; Nishi, T. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating. Adv. Mater. 2014, 26, 3009–3013.

[55]

Li, X.; Deng, Y.; Lai, J. L.; Zhao, G.; Dong, S. Y. Tough, long-term, water-resistant, and underwater adhesion of low-molecular-weight supramolecular adhesives. J. Am. Chem. Soc. 2020, 142, 5371–5379.

[56]

Mredha, M. T. I.; Le, H. H.; Cui, J. X.; Jeon, I. Double-hydrophobic-coating through quenching for hydrogels with strong resistance to both drying and swelling. Adv. Sci. 2020, 7, 1903145.

[57]

Zhang, Y.; Yang, J. L.; Hou, X. Y.; Li, G.; Wang, L.; Bai, N. N.; Cai, M. K.; Zhao, L. Y.; Wang, Y.; Zhang, J. M. et al. Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 2022, 13, 1317.

[58]

Liu, Z. Y.; Wang, X. T.; Qi, D. P.; Xu, C.; Yu, J. C.; Liu, Y. Q.; Jiang, Y.; Liedberg, B.; Chen, X. D. High-adhesion stretchable electrodes based on nanopile interlocking. Adv. Mater. 2017, 29, 1603382.

[59]

Lee, W.; Kim, H.; Kang, I.; Park, H.; Jung, J.; Lee, H.; Park, H.; Park, J. S.; Yuk, J. M.; Ryu, S. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 2022, 378, 637–641.

File
12274_2024_6516_MOESM1_ESM.pdf (534.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2023
Revised: 24 January 2024
Accepted: 25 January 2024
Published: 03 April 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The authors thank the support of the National Natural Science Foundation of China (Nos. 52125205, U20A20166, and 52192614), National Key Research and Development Program of China (Nos. 2021YFB3200302 and 2021YFB3200304), Natural Science Foundation of Beijing Municipality (No. 2222088), Shenzhen Science and Technology Program (No. KQTD20170810105439418), and the Fundamental Research Funds for the Central Universities.

Return