Journal Home > Volume 17 , Issue 6

Selective loading of spatially separated redox cocatalysts on direct Z-scheme heterojunctions holds great promise for advancing the efficiency of artificial photosynthesis, which however is limited to the photodeposition of noble metal cocatalysts and the fabrication of hollow double-shelled semiconductor heterojunctions. Moreover, the co-exposure of discrete cocatalyst and semiconductor increases the product diversity when both the exposed sites of which participate in CO2 photoreduction. Herein, we present a facile and versatile protocol to overcome these limitations via surface coating of Z-scheme heterojunctions with bifunctional noble-metal-free cocatalysts. With Cu2O/Fe2O3 (CF) as a model heterojunction and layered Ni(OH)2 as a model cocatalyst, it is found that Ni(OH)2 lying on the surfaces of Cu2O and Fe2O3 separately co-catalyzes the CO2 reduction and H2O oxidation. Thorough experimental and theoretical investigation reveals that the Ni(OH)2 outer layer: (i) mitigates the charge recombination in CF and balances their transfer and consumption; (ii) reduces the rate-determining barriers for CO2-to-CO and H2O-to-O2 conversion, (iii) suppresses the side proton reduction occurring on CF, and (iv) protects the CF from component detachment. As expected, the redox reactions stoichiometrically proceed, and significantly enhanced photocatalytic activity, selectivity, and stability in CO generation are achieved by the stacked Cu2O/Fe2O3@Ni(OH)2 in contrast to CF. This study demonstrates the significance of the synergy between bifunctional cocatalysts and Z-scheme heterojunctions for improving the efficacy of overall redox reactions, opening a fresh avenue for the rational design of artificial photosynthetic systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bifunctional noble-metal-free cocatalyst coating enabling better coupling of photocatalytic CO2 reduction and H2O oxidation on direct Z-scheme heterojunction

Show Author's information Wei Zhao1,4,§Weihao Mo1,5,§Yan Zhang1,§Lingxuan Hu1Yiyi Zheng1Zhulei Chen1Xiangyue Niu1Yuling Zhao1Lichun Liu2( )Shuxian Zhong3( )Song Bai1( )
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
College of Biological, Chemical Sciences and Engineering and Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China

§ Wei Zhao, Weihao Mo, and Yan Zhang contributed equally to this work.

Abstract

Selective loading of spatially separated redox cocatalysts on direct Z-scheme heterojunctions holds great promise for advancing the efficiency of artificial photosynthesis, which however is limited to the photodeposition of noble metal cocatalysts and the fabrication of hollow double-shelled semiconductor heterojunctions. Moreover, the co-exposure of discrete cocatalyst and semiconductor increases the product diversity when both the exposed sites of which participate in CO2 photoreduction. Herein, we present a facile and versatile protocol to overcome these limitations via surface coating of Z-scheme heterojunctions with bifunctional noble-metal-free cocatalysts. With Cu2O/Fe2O3 (CF) as a model heterojunction and layered Ni(OH)2 as a model cocatalyst, it is found that Ni(OH)2 lying on the surfaces of Cu2O and Fe2O3 separately co-catalyzes the CO2 reduction and H2O oxidation. Thorough experimental and theoretical investigation reveals that the Ni(OH)2 outer layer: (i) mitigates the charge recombination in CF and balances their transfer and consumption; (ii) reduces the rate-determining barriers for CO2-to-CO and H2O-to-O2 conversion, (iii) suppresses the side proton reduction occurring on CF, and (iv) protects the CF from component detachment. As expected, the redox reactions stoichiometrically proceed, and significantly enhanced photocatalytic activity, selectivity, and stability in CO generation are achieved by the stacked Cu2O/Fe2O3@Ni(OH)2 in contrast to CF. This study demonstrates the significance of the synergy between bifunctional cocatalysts and Z-scheme heterojunctions for improving the efficacy of overall redox reactions, opening a fresh avenue for the rational design of artificial photosynthetic systems.

Keywords: CO2 reduction, Z-scheme heterojunction, bifunctional cocatalyst, H2O oxidation, stoichiometric redox reaction

References(65)

[1]

Yoshino, S.; Takayama, T.; Yamaguchi, Y.; Iwase, A.; Kudo, A. CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 2022, 55, 966–977.

[2]

Lin, H. W.; Luo, S. Q.; Zhang, H. B.; Ye, J. H. Toward solar-driven carbon recycling. Joule 2022, 6, 294–314.

[3]

Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Two-dimensional-related catalytic materials for solar-driven conversion of CO x into valuable chemical feedstocks. Chem. Soc. Rev. 2019, 48, 1972–2010.

[4]

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

[5]

Yuan, L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21150–21172.

[6]

Zhang, F.; Li, Y. H.; Qi, M. Y.; Yamada, Y. M. A.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021, 1, 272–297.

[7]

Kong, T. T.; Jiang, Y. W.; Xiong, Y. J. Photocatalytic CO2 conversion: What can we learn from conventional CO x hydrogenation. Chem. Soc. Rev. 2020, 49, 6579–6591.

[8]

Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.

[9]

Hu, C.; Huang, H. W. Advances in piezoelectric polarization enhanced photocatalytic energy conversion. Acta Phys.—Chim. Sin. 2023, 39, 2212048.

[10]

Chen, F.; Zhang, Y. H.; Huang, H. W. Layered photocatalytic nanomaterials for environmental applications. Chin. Chem. Lett. 2023, 34, 107523.

[11]

Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

[12]

Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.

[13]

Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi̇, A. A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063.

[14]

Li, X.; Garlisi, C.; Guan, Q. S.; Anwer, S.; Al-Ali, K.; Palmisano, G.; Zheng, L. X. A review of material aspects in developing direct Z-scheme photocatalysts. Mater. Today 2021, 47, 75–107.

[15]

Xi, Y. M.; Chen, W. B.; Dong, W. R.; Fan, Z. X.; Wang, K. F.; Shen, Y.; Tu, G. M.; Zhong, S. X.; Bai, S. Engineering an interfacial facet of S-scheme heterojunction for improved photocatalytic hydrogen evolution by modulating the internal electric field. ACS Appl. Mater. Interfaces 2021, 13, 39491–39500.

[16]

Li, J. Y.; Yuan, L.; Li, S. H.; Tang, Z. R.; Xu, Y. J. One-dimensional copper-based heterostructures toward photo-driven reduction of CO2 to sustainable fuels and feedstocks. J. Mater. Chem. A 2019, 7, 8676–8689.

[17]

Zhang, W. H.; Mohamed, A. R.; Ong, W. J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now. Angew. Chem., Int. Ed. 2020, 59, 22894–22915.

[18]

Wang, L. X.; Bie, C. B.; Yu, J. G. Challenges of Z-scheme photocatalytic mechanisms. Trends Chem. 2022, 4, 973–983.

[19]

Wang, S. H.; Li, Z. R.; Yang, G. D.; Xu, Y. B.; Zheng, Y. Y.; Zhong, S. X.; Zhao, Y. L.; Bai, S. Embedding nano-piezoelectrics into heterointerfaces of S-scheme heterojunctions for boosting photocatalysis and piezophotocatalysis. Small 2023, 19, 2302717.

[20]

Li, H. J.; Tu, W. G.; Zhou, Y.; Zou, Z. G. Z-scheme photocatalytic systems for promoting photocatalytic performance: Recent progress and future challenges. Adv. Sci. 2016, 3, 1500389.

[21]

Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

[22]

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

[23]

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

[24]

Di, J.; Lin, B.; Tang, B. J.; Guo, S. S.; Zhou, J. D.; Liu, Z. Engineering cocatalysts onto low-dimensional photocatalysts for CO2 reduction. Small Struct. 2021, 2, 2100046.

[25]

Zhong, S. X.; Xi, Y. M.; Wu, S. J.; Liu, Q.; Zhao, L. H.; Bai, S. Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. J. Mater. Chem. A 2020, 8, 14863–14894.

[26]

Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

[27]

Yang, G. D.; Wang, S. H.; Wu, Y. J.; Zhou, H.; Zhao, W.; Zhong, S. X.; Liu, L. C.; Bai, S. Spatially separated redox cocatalysts on ferroelectric nanoplates for improved piezophotocatalytic CO2 reduction and H2O oxidation. ACS Appl. Mater. Interfaces 2023, 15, 14228–14239.

[28]

Qiu, B. C.; Du, M. M.; Ma, Y. X.; Zhu, Q. H.; Xing, M. Y.; Zhang, J. L. Integration of redox cocatalysts for artificial photosynthesis. Energy Environ. Sci. 2021, 14, 5260–5288.

[29]

Sun, L.; Zhang, Z. Q.; Bian, J.; Bai, F. Q.; Su, H. W.; Li, Z. J.; Xie, J. J.; Xu, R. P.; Sun, J. H.; Bai, L. L. et al. A Z-scheme heterojunctional photocatalyst engineered with spatially separated dual redox sites for selective CO2 reduction with water: Insight by in situ μs-transient absorption spectra. Adv. Mater. 2023, 35, 2300064.

[30]

Li, F.; Yue, X. Y.; Liao, Y. L.; Qiao, L.; Lv, K. L.; Xiang, Q. J. Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction. Nat. Commun. 2023, 14, 3901.

[31]

Zhou, X. F.; Fang, Y. X.; Cai, X.; Zhang, S. S.; Yang, S. Y.; Wang, H. Q.; Zhong, X. H.; Fang, Y. P. In situ photodeposited construction of Pt-CdS/g-C3N4-MnO x composite photocatalyst for efficient visible-light-driven overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 20579–20588.

[32]

Raziq, F.; Sun, L. Q.; Wang, Y. Y.; Zhang, X. L.; Humayun, M.; Ali, S.; Bai, L. L.; Qu, Y.; Yu, H. T.; Jing, L. Q. Synthesis of large surface-area g-C3N4 comodified with MnO x and Au-TiO2 as efficient visible-light photocatalysts for fuel production. Adv. Energy Mater. 2018, 8, 1701580.

[33]

Wang, Z.; Wu, W. W.; Xu, Q.; Li, G. D.; Liu, S. H.; Jia, X. F.; Qin, Y.; Wang, Z. L. Type-II hetero-junction dual shell hollow spheres loaded with spatially separated cocatalyst for enhancing visible light hydrogen evolution. Nano Energy 2017, 38, 518–525.

[34]

Zhang, Y.; Shi, H. L.; Zhao, S. Y.; Chen, Z. L.; Zheng, Y. Y.; Tu, G. M.; Zhong, S. X.; Zhao, Y. L.; Bai, S. Hollow plasmonic P-metal-N S-scheme heterojunction photoreactor with spatially separated dual cocatalysts toward artificial photosynthesis. Small 2024, 20, 2304050.

[35]

Zhang, X. W.; Song, Y. L.; Niu, X. Y.; Lin, X. Y.; Zhong, S. X.; Lin, H. J.; Teng, B. T.; Bai, S. Emerging hollow artificial photosynthetic system with S-scheme heterojunction sandwiched between layered redox cocatalysts for overall CO2 reduction and H2O oxidation. Appl. Catal. B: Environ. 2024, 342, 123445.

[36]

Liu, Q.; Wang, S. H.; Mo, W. H.; Zheng, Y. Y.; Xu, Y. B.; Yang, G. D.; Zhong, S. X.; Ma, J.; Liu, D.; Bai, S. Emerging stacked photocatalyst design enables spatially separated Ni(OH)2 redox cocatalysts for overall CO2 reduction and H2O oxidation. Small 2022, 18, 2104681.

[37]

Lu, K. Q.; Li, Y. H.; Zhang, F.; Qi, M. Y.; Chen, X.; Tang, Z. R.; Yamada, Y. M. A.; Anpo, M.; Conte, M.; Xu, Y. J. Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nat. Commun. 2020, 11, 5181.

[38]

Gao, S.; Sun, Y. F.; Lei, F. C.; Liu, J. W.; Liang, L.; Li, T. W.; Pan, B. C.; Zhou, J. F.; Xie, Y. Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting. Nano Energy 2014, 8, 205–213.

[39]

Wang, R. H.; Xu, C. H.; Sun, J.; Gao, L. Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: Nucleation mechanism and lithium storage properties. Sci. Rep. 2014, 4, 7171.

[40]

Huang, C. J.; Ye, W. Q.; Liu, Q. W.; Qiu, X. Q. Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction. ACS Appl. Mater. Interfaces 2014, 6, 14469–14476.

[41]

Trenczek-Zajac, A.; Synowiec, M.; Zakrzewska, K.; Zazakowny, K.; Kowalski, K.; Dziedzic, A.; Radecka, M. Scavenger-supported photocatalytic evidence of an extended type I electronic structure of the TiO2@Fe2O3 interface. ACS Appl. Mater. Interfaces 2022, 14, 38255–38269.

[42]

Wang, P.; Cai, Y. L.; Mo, W. H.; Fan, Z. X.; Li, Z. R.; Wu, L. Y.; Zhong, S. X.; Bai, S. Modulating the Schottky barrier heights of plasmonic metal/semiconductor heterojunctions by graphene substrates for boosting photocatalytic water oxidation. Appl. Surf. Sci. 2024, 642, 158561.

[43]

Low, J.; Dai, B. Z.; Tong, T.; Jiang, C. J.; Yu, J. G. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981

[44]

Yuan, L.; Hung, S. F.; Tang, Z. R.; Chen, H. M.; Xiong, Y. J.; Xu, Y. J. Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal. 2019, 9, 4824–4833.

[45]

Li, S. H.; Qi, M. Y.; Fan, Y. Y.; Yang, Y.; Anpo, M.; Yamada, Y. M. A.; Tang, Z. R.; Xu, Y. J. Modulating photon harvesting through dynamic non-covalent interactions for enhanced photochemical CO2 reduction. Appl. Catal. B: Environ. 2021, 292, 120157.

[46]

Toe, C. Y.; Zheng, Z. K.; Wu, H.; Scott, J.; Amal, R.; Ng, Y. H. Photocorrosion of cuprous oxide in hydrogen production: Rationalising self-oxidation or self-reduction. Angew. Chem., Int. Ed. 2018, 57, 13613–13617.

[47]

Zhou, M.; Guo, Z. G.; Liu, Z. F. FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelctrochemical performance. Appl. Catal. B: Environ. 2020, 260, 118213.

[48]

Weng, B.; Qi, M. Y.; Han, C.; Tang, Z. R.; Xu, Y. J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal. 2019, 9, 4642–4687.

[49]

Wang, J. J.; Hu, C.; Zhang, Y. H.; Huang, H. W. Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution. Chin. J. Catal. 2022, 43, 1277–1285.

[50]

Xi, Y. M.; Mo, W. H.; Fan, Z. X.; Hu, L. X.; Chen, W. B.; Zhang, Y.; Wang, P.; Zhong, S. X.; Zhao, Y. L.; Bai, S. A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction. J. Mater. Chem. A 2022, 10, 20934–20945.

[51]

Jiang, Y.; Liao, J. F.; Chen, H. Y.; Zhang, H. H.; Li, J. Y.; Wang, X. D.; Kuang, D. B. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem 2020, 6, 766–780.

[52]

Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447

[53]

Qi, M. Y.; Xu, Y. J. Efficient and direct functionalization of allylic sp3 C–H bonds with concomitant CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202311731.

[54]

Kawabe, Y.; Ito, Y.; Hori, Y.; Kukunuri, S.; Shiokawa, F.; Nishiuchi, T.; Jeong, S.; Katagiri, K.; Xi, Z. Y.; Li, Z. K. et al. 1T/1H-SnS2 sheets for electrochemical CO2 reduction to formate. ACS Nano 2023, 17, 11318–11326

[55]

Dai, L.; Chen, Z. N.; Li, L. X.; Yin, P. Q.; Liu, Z. Q.; Zhang, H. Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv. Mater. 2020, 32, 1906915.

[56]

Wang, R. N.; Wang, Z.; Wan, S. P.; Liu, Q.; Ding, J.; Zhong, Q. Facile layer regulation strategy of layered double hydroxide nanosheets for artificial photosynthesis and mechanism insight. Chem. Eng. J. 2022, 434, 134434.

[57]

Sheng, J. P.; He, Y.; Li, J. Y.; Yuan, C. W.; Huang, H. W.; Wang, S. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2 to-CO photoreduction. ACS Nano 2020, 14, 13103–13114.

[58]

Mo, W. H.; Fan, Z. X.; Zhong, S. X.; Chen, W. B.; Hu, L. X.; Zhou, H.; Zhao, W.; Lin, H. J.; Ge, J.; Chen, J. R. et al. Embedding plasmonic metal into heterointerface of MOFs-encapsulated semiconductor hollow architecture for boosting CO2 photoreduction. Small 2023, 19, 2207705.

[59]

Lei, B.; Cui, W.; Chen, P.; Chen, L. C.; Li, J. Y.; Dong, F. C-doping induced oxygen-vacancy in WO3 nanosheets for CO2 activation and photoreduction. ACS Catal. 2022, 12, 9670–9678.

[60]

Wang, K.; Cao, M. Y.; Lu, J. B.; Lu, Y.; Lau, C. H.; Zheng, Y.; Fan, X. F. Operando DRIFTS-MS investigation on plasmon-thermal coupling mechanism of CO2 hydrogenation on Au/TiO2: The enhanced generation of oxygen vacancies. Appl. Catal. B: Environ. 2021, 296, 120341.

[61]

He, W. J.; Wei, Y. C.; Xiong, J.; Tang, Z. L.; Song, W. Y.; Liu, J.; Zhao, Z. Insight into reaction pathways of CO2 photoreduction into CH4 over hollow microsphere Bi2MoO6-supported Au catalysts. Chem. Eng. J. 2022, 433, 133540.

[62]

Si, S. H.; Shou, H. W.; Mao, Y. Y.; Bao, X. L.; Zhai, G. Y.; Song, K. P.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Zheng, Z. K. et al. Low-coordination single Au atoms on ultrathin ZnIn2S4 nanosheets for selective photocatalytic CO2 reduction towards CH4. Angew. Chem., Int. Ed. 2022, 61, e202209446.

[63]

Verma, P.; Singh, A.; Rahimi, F. A.; Sarkar, P.; Nath, S.; Pati, S. K.; Maji, T. K. Charge-transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel. Nat. Commun. 2021, 12, 7313.

[64]

Chen, L.; Xu, Y.; Su, L. Y.; He, T.; Zhang, L. Q.; Shen, H. X.; Cheng, Q.; Liu, L. C.; Bai, S.; Hong, S. H. Visible-light-enhanced hydrogen evolution through anodic furfural electro-oxidation using nickel atomically dispersed copper nanoparticles. Inorg. Chem. 2024, 63, 730–738.

[65]

Dai, F. X.; Zhang, M. M.; Han, J. S.; Li, Z. J.; Feng, S. H.; Xing, J.; Wang, L. Bifunctional core–shell co-catalyst for boosting photocatalytic CO2 reduction to CH4. Nano Res. 2024, 17, 1259–1266

File
12274_2024_6514_MOESM1_ESM.pdf (5.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 December 2023
Revised: 16 January 2024
Accepted: 24 January 2024
Published: 02 March 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21603191), Zhejiang Provincial Natural Science Foundation of China (Nos. LY20B030003 and LQ16B010001), Public Welfare Technology Application Research Plan Project of Zhejiang Province (Analysis Test Item, No. 2017C37024), Foundation of Science and Technology Bureau of Jinhua (No. 20204185), and Self-Topic Fund of Zhejiang Normal University (No. 2020ZS04).

Return