Journal Home > Volume 17 , Issue 6

The lack of effective charge transfer driving force and channel limits the electron directional migration in nanoclusters (NC)-based heterostructures, resulting in poor photocatalytic performance. Herein, a Z-scheme NC-based heterojunction (Pt1Ag28-BTT/CoP, BTT = 1,3,5-benzenetrithiol) with strong internal electric field is constructed via interfacial Co–S bond, which exhibits an absolutely superiority in photocatalytic performance with 24.89 mmol·h−1·g−1 H2 production rate, 25.77% apparent quantum yield at 420 nm, and ~ 100% activity retention in stability, compared with Pt1Ag28-BDT/CoP (BDT = 1,3-benzenedithiol), Ag29-BDT/CoP, and CoP. The enhanced catalytic performance is contributed by the dual modulation strategy of inner core and outer shell of NC, wherein, the center Pt single atom doping regulates the band structure of NC to match well with CoP, builds internal electric field, and then drives photogenerated electrons steering; the accurate surface S modification promotes the formation of Co–S atomic-precise interface channel for further high-efficient Z-scheme charge directional migration. This work opens a new avenue for designing NC-based heterojunction with matchable band structure and valid interfacial charge transfer.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rationally construction of atomic-precise interfacial charge transfer channel and strong build-in electric field in nanocluster-based Z-scheme heterojunctions with enhanced photocatalytic hydrogen production

Show Author's information Qingtao Zhu,§Honglei Shen,§Chao HanLiu HuangYanting ZhouYuanxin Du( )Xi Kang( )Manzhou Zhu( )
Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China

§ Qingtao Zhu and Honglei Shen contributed equally to this work.

Abstract

The lack of effective charge transfer driving force and channel limits the electron directional migration in nanoclusters (NC)-based heterostructures, resulting in poor photocatalytic performance. Herein, a Z-scheme NC-based heterojunction (Pt1Ag28-BTT/CoP, BTT = 1,3,5-benzenetrithiol) with strong internal electric field is constructed via interfacial Co–S bond, which exhibits an absolutely superiority in photocatalytic performance with 24.89 mmol·h−1·g−1 H2 production rate, 25.77% apparent quantum yield at 420 nm, and ~ 100% activity retention in stability, compared with Pt1Ag28-BDT/CoP (BDT = 1,3-benzenedithiol), Ag29-BDT/CoP, and CoP. The enhanced catalytic performance is contributed by the dual modulation strategy of inner core and outer shell of NC, wherein, the center Pt single atom doping regulates the band structure of NC to match well with CoP, builds internal electric field, and then drives photogenerated electrons steering; the accurate surface S modification promotes the formation of Co–S atomic-precise interface channel for further high-efficient Z-scheme charge directional migration. This work opens a new avenue for designing NC-based heterojunction with matchable band structure and valid interfacial charge transfer.

Keywords: photocatalytic hydrogen production, build-in electric field, interfacial charge transfer, atomically precise metal nanocluster, Z-scheme heterojunction

References(58)

[1]

Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

[2]

Tao, X. P.; Zhao, Y.; Wang, S. Y.; Li, C.; Li, R. G. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608.

[3]

Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676.

[4]

Yang, J.; Jing, J. F.; Zhu, Y. F. A full-spectrum porphyrin-fullerene D-A supramolecular photocatalyst with giant built-in electric field for efficient hydrogen production. Adv. Mater. 2021, 33, 2101026.

[5]

Liu, D.; Ding, T.; Wang, L. F.; Zhang, H. J.; Xu, L.; Pang, B. B.; Liu, X. K.; Wang, H. J.; Wang, J. H.; Wu, K. F. et al. In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution. Nat. Commun. 2023, 14, 1720.

[6]

Ruan, X. W.; Huang, C. X.; Cheng, H.; Zhang, Z. Q.; Cui, Y.; Li, Z. Y.; Xie, T. F.; Ba, K. K.; Zhang, H. Y.; Zhang, L. et al. A twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Adv. Mater. 2023, 35, 2209141.

[7]

Lin, F.; Zhou, S.; Wang, G. H.; Wang, J.; Gao, T. Y.; Su, Y. R.; Wong, C. P. Electrostatic self-assembly combined with microwave hydrothermal strategy: Construction of 1D/1D carbon nanofibers/crystalline g-C3N4 heterojunction for boosting photocatalytic hydrogen production. Nano Energy 2022, 99, 107432.

[8]

Wang, S. X.; Tang, L.; Cai, B. G.; Yin, Z. M.; Li, Y. F.; Xiong, L.; Kang, X.; Xuan, J.; Pei, Y.; Zhu, M. Z. Ligand modification of Au25 nanoclusters for near-infrared photocatalytic oxidative functionalization. J. Am. Chem. Soc. 2022, 144, 3787–3792.

[9]

Tian, F.; Chen, J.; Chen, F. X.; Liu, Y. L.; Xu, Y. Q.; Chen, R. Boosting hydrogen evolution over Ni6(SCH2Ph)12 nanocluster modified TiO2 via pseudo-Z-scheme interfacial charge transfer. Appl. Catal. B Environ. 2021, 292, 120158.

[10]

Wang, Y. Q.; Li, J. R.; Hu, Q. Q.; Hao, M. T.; Liu, Y. F.; Gong, L. K.; Li, R. F.; Huang, X. Y. Boosting visible-light-driven photocatalytic hydrogen production through sensitizing TiO2 via novel nanoclusters. ACS Appl. Mater. Interfaces 2021, 13, 40562–40570.

[11]

Yun, H. J.; Paik, T.; Diroll, B.; Edley, M. E.; Baxter, J. B.; Murray, C. B. Nanocrystal size-dependent efficiency of quantum dot sensitized solar cells in the strongly coupled CdSe nanocrystals/TiO2 system. ACS Appl. Mater. Interfaces 2016, 8, 14692–14700.

[12]

Wang, C. Y.; Lv, P.; Xue, D. X.; Cai, Y.; Yan, X. X.; Xu, L.; Fang, J.; Yang, Y. Zero-dimensional/two-dimensional Au25(Cys)18 nanoclusters/g-C3N4 nanosheets composites for enhanced photocatalytic hydrogen production under visible light. ACS. Sustain. Chem. Eng. 2018, 6, 8447–8457.

[13]

Wang, Y.; Liu, X. H.; Wang, Q. K.; Quick, M.; Kovalenko, S. A.; Chen, Q. Y.; Koch, N.; Pinna, N. Insights into charge transfer at an atomically precise nanocluster/semiconductor interface. Angew. Chem., Int. Ed. 2020, 59, 7748–7754.

[14]

Cao, Y. D.; Hao, H. P.; Liu, H. S.; Yin, D.; Wang, M. L.; Gao, G. G.; Fan, L. L.; Liu, H. A 20-core copper(I) nanocluster as electron-hole recombination inhibitor on TiO2 nanosheets for enhancing photocatalytic H2 evolution. Nanoscale 2021, 13, 16182–16188.

[15]

Han, M.; Guo, M. H.; Yun, Y. P.; Xu, Y. J.; Sheng, H. T.; Chen, Y. X.; Du, Y. X.; Ni, K.; Zhu, Y. W.; Zhu, M. Z. Effect of heteroatom and charge reconstruction in atomically precise metal nanoclusters on electrochemical synthesis of ammonia. Adv. Funct. Mater. 2022, 32, 2202820.

[16]

Sun, Y. N.; Liu, X.; Xiao, K.; Zhu, Y.; Chen, M. Y. Active-site tailoring of gold cluster catalysts for electrochemical CO2 reduction. ACS Catal. 2021, 11, 11551–11560.

[17]

Deng, G. C.; Kim, J.; Bootharaju, M. S.; Sun, F.; Lee, K.; Tang, Q.; Hwang, Y. J.; Hyeon, T. Body-centered-cubic-kernelled Ag15Cu6 nanocluster with alkynyl protection: Synthesis, total structure, and CO2 electroreduction. J. Am. Chem. Soc. 2023, 145, 3401–3407.

[18]

Yu, H. J.; Dai, M.; Zhang, J.; Chen, W. H.; Jin, Q.; Wang, S. G.; He, Z. L. Interface engineering in 2D/2D heterogeneous photocatalysts. Small 2023, 19, 2205767.

[19]

Liang, H.; Liu, B. J.; Tang, B.; Zhu, S. C.; Li, S.; Ge, X. Z.; Li, J. L.; Zhu, J. R.; Xiao, F. X. Atomically precise metal nanocluster-mediated photocatalysis. ACS Catal. 2022, 12, 4216–4226.

[20]

Yu, C. L.; Li, G.; Kumar, S.; Kawasaki, H.; Jin, R. C. Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity. J. Phys. Chem. Lett. 2013, 4, 2847–2852.

[21]

Kurashige, W.; Hayashi, R.; Wakamatsu, K.; Kataoka, Y.; Hossain, S.; Iwase, A.; Kudo, A.; Yamazoe, S.; Negishi, Y. Atomic-level understanding of the effect of heteroatom doping of the cocatalyst on water-splitting activity in AuPd or AuPt alloy cluster-loaded BaLa4Ti4O15. ACS Appl. Energy Mater. 2019, 2, 4175–4187.

[22]

Rong, H. P.; Ji, S. F.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 2020, 11, 5884.

[23]

Du, X. L.; Wang, X. L.; Li, Y. H.; Wang, Y. L.; Zhao, J. J.; Fang, L. J.; Zheng, L. R.; Tong, H.; Yang, H. G. Isolation of single Pt atoms in a silver cluster: Forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 9402–9405.

[24]

Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

[25]

AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D. E.; Bakr, O. M. Ag29(BDT)12(TPP)4: A tetravalent nanocluster. J. Am. Chem. Soc. 2015, 137, 11970–11975.

[26]

Kang, X.; Zhou, M.; Wang, S. X.; Jin, S.; Sun, G. D.; Zhu, M. Z.; Jin, R. C. The tetrahedral structure and luminescence properties of Bi-metallic Pt1Ag28(SR)18(PPh3)4 nanocluster. Chem. Sci. 2017, 8, 2581–2587.

[27]

Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–10893.

[28]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

[29]

Li, B. S.; Liu, S. Y.; Lai, C.; Zeng, G. M.; Zhang, M. M.; Zhou, M. Z.; Huang, D. L.; Qin, L.; Liu, X. G.; Li, Z. W. et al. Unravelling the interfacial charge migration pathway at atomic level in 2D/2D interfacial Schottky heterojunction for visible-light-driven molecular oxygen activation. Appl. Catal. B Environ. 2020, 266, 118650.

[30]

Morello, G.; Della Sala, F.; Carbone, L.; Manna, L.; Maruccio, G.; Cingolani, R.; De Giorgi, M. Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field. Phys. Rev. B 2008, 78, 195313.

[31]

Lefebvre, P.; Allègre, J.; Gil, B.; Mathieu, H.; Grandjean, N.; Leroux, M.; Massies, J.; Bigenwald, P. Time-resolved photoluminescence as a probe of internal electric fields in GaN-(GaAl)N quantum wells. Phys. Rev. B 1999, 59, 15363–15367.

[32]

Pradhan, B.; Kumar, G. S.; Dalui, A.; Khan, A. H.; Satpati, B.; Ji, Q. M.; Shrestha, L. K.; Ariga, K.; Acharya, S. Shape-controlled cobalt phosphide nanoparticles as volatile organic solvent sensor. J. Mater. Chem. C 2016, 4, 4967–4977.

[33]

Lin, Q.; Guo, D. Y.; Zhou, L.; Yang, L.; Jin, H. L.; Li, J.; Fang, G. Y.; Chen, X. A.; Wang, S. Tuning the interface of Co1− x S/Co(OH)F by atomic replacement strategy toward high-performance electrocatalytic oxygen evolution. ACS Nano 2022, 16, 15460–15470.

[34]

Guo, D. Y.; Wang, J. H.; Zhang, L.; Chen, X. A.; Wan, Z. X.; Xi, B. Strategic atomic layer deposition and electrospinning of cobalt sulfide/nitride composite as efficient bifunctional electrocatalysts for overall water splitting. Small 2020, 16, 2002432.

[35]

Zhou, X. Q.; Luo, M. Y.; Xie, C. Y.; Wang, H. B.; Wang, J.; Chen, Z. L.; Xiao, J. W.; Chen, Z. Q. Tunable S doping from Co3O4 to Co9S8 for peroxymonosulfate activation: Distinguished radical/nonradical species and generation pathways. Appl. Catal. B Environ. 2021, 282, 119605.

[36]

Li, N.; Ding, Y. X.; Wu, J. J.; Zhao, Z. J.; Li, X. T.; Zheng, Y. Z.; Huang, M. L.; Tao, X. Efficient, full spectrum-driven H2 evolution Z-scheme Co2P/CdS photocatalysts with Co–S bonds. ACS Appl. Mater. Interfaces 2019, 11, 22297–22306.

[37]

Vála, L.; Medlín, R.; Koštejn, M.; Karatodorov, S.; Jandová, V.; Vavruňková, V.; Křenek, T. Laser-induced reactive deposition of nanostructured CoS2- and Co2CuS4-based films with fenton catalytic properties. Eur. J. Inorg. Chem. 2019, 2019, 1220–1227.

[38]

Wei, X.; Chu, K.; Adsetts, J. R.; Li, H.; Kang, X.; Ding, Z. F.; Zhu, M. Z. Nanocluster transformation induced by SbF6- anions toward boosting photochemical activities. J. Am. Chem. Soc. 2022, 144, 20421–20433.

[39]

Chen, Z. P.; Pronkin, S.; Fellinger, T. P.; Kailasam, K.; Vilé, G.; Albani, D.; Krumeich, F.; Leary, R.; Barnard, J.; Thomas, J. M. et al. Merging single-atom-dispersed silver and carbon nitride to a joint electronic system via copolymerization with silver tricyanomethanide. ACS Nano 2016, 10, 3166–3175.

[40]

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

[41]

Xu, K.; Cheng, H.; Lv, H. F.; Wang, J. Y.; Liu, L. Q.; Liu, S.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater. 2018, 30, 1703322.

[42]

Geng, S.; Tian, F. Y.; Li, M. G.; Guo, X.; Yu, Y. S.; Yang, W. W.; Hou, Y. L. Hole-rich CoP nanosheets with an optimized d-band center for enhancing pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A 2021, 9, 8561–8567.

[43]

Chen, L. Y.; Xie, X. L.; Su, T. M.; Ji, H. B.; Qin, Z. Z. Co3O4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production: Co–S bond as a bridge for electron transfer. Appl. Surf. Sci. 2021, 567, 150849.

[44]

Qiu, B. C.; Zhu, Q. H.; Du, M. M.; Fan, L. G.; Xing, M. Y.; Zhang, J. L. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem., Int. Ed. 2017, 56, 2684–2688.

[45]

Li, C. Q.; Du, X.; Jiang, S.; Liu, Y.; Niu, Z. L.; Liu, Z. Y.; Yi, S. S.; Yue, X. Z. Constructing direct Z-scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow Cube for efficient photocatalytic H2 generation. Adv. Sci. 2022, 9, 2201773.

[46]

Zhang, T. X.; Meng, F. L.; Cheng, Y.; Dewangan, N.; Ho, G. W.; Kawi, S. Z-scheme transition metal bridge of Co9S8/Cd/CdS tubular heterostructure for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2021, 286, 119853.

[47]

Xu, J. Y.; Li, W. L.; Liu, W. X.; Jing, J. F.; Zhang, K. F.; Liu, L.; Yang, J.; Zhu, E. W.; Li, J. S.; Zhu, Y. F. Efficient photocatalytic hydrogen and oxygen evolution by side-group engineered benzodiimidazole oligomers with strong built-in electric fields and short-range crystallinity. Angew. Chem., Int. Ed. 2022, 61, e202212243.

[48]

Qin, Z. X.; Chen, Y. B.; Huang, Z. X.; Su, J. Z.; Guo, L. J. A bifunctional NiCoP-based core/shell cocatalyst to promote separate photocatalytic hydrogen and oxygen generation over graphitic carbon nitride. J. Mater. Chem. A 2017, 5, 19025–19035.

[49]

Deng, Y.; Zhang, Z.; Du, P. Y.; Ning, X. M.; Wang, Y.; Zhang, D. X.; Liu, J.; Zhang, S. T.; Lu, X. Q. Embedding ultrasmall Au clusters into the pores of a covalent organic framework for enhanced photostability and photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 6082–6089.

[50]

Guo, T.; Wang, K.; Zhang, G. K.; Wu, X. Y. A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance. Appl. Surf. Sci. 2019, 469, 331–339.

[51]

Kang, X.; Xiong, L.; Wang, S. X.; Yu, H. Z.; Jin, S.; Song, Y. B.; Chen, T.; Zheng, L. W.; Pan, C. S.; Pei, Y. et al. Shape-controlled synthesis of trimetallic nanoclusters: Structure elucidation and properties investigation. Chem.—Eur. J. 2016, 22, 17145–17150.

[52]

Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

[53]

Boruah, B.; Gupta, R.; Modak, J. M.; Madras, G. Novel insights into the properties of AgBiO3 photocatalyst and its application in immobilized state for 4-nitrophenol degradation and bacteria inactivation. J. Photochem. Photobiol. A Chem. 2019, 373, 105–115.

[54]

Yang, J.; Jing, J. F.; Li, W. L.; Zhu, Y. F. Electron donor–acceptor interface of TPPS/PDI boosting charge transfer for efficient photocatalytic hydrogen evolution. Adv. Sci. 2022, 9, 2201134.

[55]

Li, J.; Zhan, G. M.; Yu, Y.; Zhang, L. Z. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 2016, 7, 11480.

[56]

Zhou, Q. X.; Guo, Y.; Ye, Z. Q.; Fu, Y. Z.; Guo, Y.; Zhu, Y. F. Carbon nitride photocatalyst with internal electric field induced photogenerated carriers spatial enrichment for enhanced photocatalytic water splitting. Mater. Today 2022, 58, 100–109.

[57]

Shen, R. C.; Zhang, L.; Li, N.; Lou, Z. Z.; Ma, T. Y.; Zhang, P.; Li, Y. J.; Li, X. W-N bonds precisely boost Z-scheme interfacial charge transfer in g-C3N4/WO3 heterojunctions for enhanced photocatalytic H2 evolution. ACS Catal. 2022, 12, 9994–10003.

[58]

Xia, B. Q.; He, B. W.; Zhang, J. J.; Li, L. Q.; Zhang, Y. Z.; Yu, J. G.; Ran, J. R.; Qiao, S. Z. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2201449.

File
12274_2024_6511_MOESM1_ESM.pdf (5.5 MB)
12274_2024_6511_MOESM2_ESM.pdf (276.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 November 2023
Revised: 24 January 2024
Accepted: 25 January 2024
Published: 29 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

We acknowledge the financial support of the Natural Science research project of Universities in Anhui Province (No. KJ2021ZD0001), the Natural Science Foundation of Anhui Province (No. 2208085MB20), and the National Natural Science Foundation of China (No. 22101001).

Return