Journal Home > Volume 17 , Issue 6

Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal–support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly defective N-doped carbon nanotubes (d-N-CNT) as the support to achieve uniform and firm anchoring of Ru clusters (~ 1.9 nm) via a thermal-shock strategy. The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction (HER) in alkaline media and requires an overpotential (ƞ) of 12 mV at 10 mA·cm−2 and 116 mV at 200 mA·cm−2 with a Ru loading of 0.025 mg·cm−2. Impressively, Ru/d-N-CNT presents robust stability for HER at both low current density (stable for at least 1000 h at 10 mA·cm−2) and the industrial level of current density (stable for at least 100 h at 1000 mA·cm−2), remarkably outperforming commercial Pt/C and Ru/C. The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal–support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters. Meanwhile, the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process, which also played an important role in stabilizing the HER performance especially at large current density.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution

Show Author's information Zhiming Li1,2,§Xinyu Li2,§Haiqing Ma1Chenliang Ye3Hongan Yu1Long Nie1Meng Zheng1Jin Wang1,2( )
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
Department of Power Engineering, North China Electric Power University, Baoding 071003, China

§ Zhiming Li and Xinyu Li contributed equally to this work.

Abstract

Non-Pt or low-Pt catalysts capable for stable generation of hydrogen via water electrolysis at an industrial level of current density are highly demanded. Construction of strong metal–support connection is beneficial to improve the performance stability of electrocatalysts. Here we employed highly defective N-doped carbon nanotubes (d-N-CNT) as the support to achieve uniform and firm anchoring of Ru clusters (~ 1.9 nm) via a thermal-shock strategy. The as-prepared Ru/d-N-CNT catalyst shows excellent catalytic activity for hydrogen evolution reaction (HER) in alkaline media and requires an overpotential (ƞ) of 12 mV at 10 mA·cm−2 and 116 mV at 200 mA·cm−2 with a Ru loading of 0.025 mg·cm−2. Impressively, Ru/d-N-CNT presents robust stability for HER at both low current density (stable for at least 1000 h at 10 mA·cm−2) and the industrial level of current density (stable for at least 100 h at 1000 mA·cm−2), remarkably outperforming commercial Pt/C and Ru/C. The highly defective nature of the N-CNT support endowed the as-prepared Ru/d-N-CNT catalyst with strong metal–support adhesion that efficiently suppressed agglomeration as well as obscission of Ru clusters. Meanwhile, the rich defects increased the surface energy of the N-CNT support and resulted in improved hydrophilicity as evidenced by the liquid contact angle measurement and the bubble evolution process, which also played an important role in stabilizing the HER performance especially at large current density.

Keywords: hydrogen evolution reaction, thermal-shock method, large-current-density, Ru cluster

References(52)

[1]

Zheng, Y. J.; Dai, W. Y.; Zhang, X. Q.; Huang, J. Q.; Maruyama, S.; Yuan, H.; Xiang, R. Nanotube-based heterostructures for electrochemistry: A mini-review on lithium storage, hydrogen evolution and beyond. J. Energy Chem. 2022, 70, 630–642.

[2]

Meng, Z. Y.; Qiu, Z. M.; Shi, Y. X.; Wang, S. X.; Zhang, G. X.; Pi, Y. C.; Pang, H. Micro/nano metal-organic frameworks meet energy chemistry: A review of materials synthesis and applications. eScience 2023, 3, 100092.

[3]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[4]

Zeng, Y.; Zhao, M. T.; Zeng, H. L.; Jiang, Q.; Ming, F. W.; Xi, K.; Wang, Z. C.; Liang, H. F. Recent progress in advanced catalysts for electrocatalytic hydrogenation of organics in aqueous conditions. eScience 2023, 3, 100156.

[5]

Wu, Q. K.; Yang, W. J.; Wang, X. D.; Zhu, W.; Lv, S. S.; Zhou, Y.; Chen, T. Y.; Liu, S. H.; Li, W. Y.; Chen, Z. Inherent vacancy of compressive Ru nanoparticles accelerate electro-catalytic hydrogen energy conversion. Appl. Catal. B Environ. 2023, 335, 122896.

[6]

McPherson, M.; Johnson, N.; Strubegger, M. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions. Appl. Energy. 2018, 216, 649–661.

[7]

Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

[8]

Raza, A.; Deen, K. M.; Asselin, E.; Haider, W. A review on the electrocatalytic dissociation of water over stainless steel: Hydrogen and oxygen evolution reactions. Renew. Sustain. Energy Rev. 2022, 161, 112323.

[9]

Sun, L.; Luo, Q. M.; Dai, Z. F.; Ma, F. Material libraries for electrocatalytic overall water splitting. Coord. Chem. Rev. 2021, 444, 214049.

[10]

Zhu, W. J.; Huang, Z. H.; Zhao, M. T.; Huang, R. P.; Wang, Z. C.; Liang, H. F. Hydrogen production by electrocatalysis using the reaction of acidic oxygen evolution: A review. Environ. Chem. Lett. 2022, 20, 3429–3452.

[11]

Liu, F.; Shi, C. X.; Guo, X. L.; He, Z. X.; Pan, L.; Huang, Z. F.; Zhang, X. W.; Zou, J. J. Rational design of better hydrogen evolution electrocatalysts for water splitting: A review. Adv. Sci. 2022, 9, 2200307.

[12]

Xu, J. Y.; Liu, T. F.; Li, J. J.; Li, B.; Liu, Y. F.; Zhang, B. S.; Xiong, D. H.; Amorim, I.; Li, W.; Liu, L. F. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819–1827.

[13]

Guo, F.; Macdonald, T. J.; Sobrido, A. J.; Liu, L. X.; Feng, J. R.; He, G. J. Recent advances in ultralow-Pt-loading electrocatalysts for the efficient hydrogen evolution. Adv. Sci. 2023, 10, 2301098.

[14]

Lancet, D.; Pecht, I. Spectroscopic and immunochemical studies with nitrobenzoxadiazolealanine, a fluorescent dinitrophenyl analog. Biochemistry 1977, 16, 5150–5157.

[15]

Yan, Y. T.; Lin, J. H.; Xu, T. X.; Liu, B. S.; Huang, K. K.; Qiao, L.; Liu, S. D.; Cao, J.; Jun, S. C.; Yamauchi, Y. et al. Atomic-level platinum filling into Ni-vacancies of dual-deficient NiO for boosting electrocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2200434.

[16]

Chen, Y. J.; Li, J.; Wang, N.; Zhou, Y. N.; Zheng, J.; Chu, W. Plasma-assisted highly dispersed Pt single atoms on Ru nanoclusters electrocatalyst for pH-universal hydrogen evolution. Chem. Eng. J. 2022, 448, 137611.

[17]

Li, L. L.; Tian, F. Y.; Qiu, L. Y.; Wu, F. Y.; Yang, W. W.; Yu, Y. S. Recent progress on ruthenium-based electrocatalysts towards the hydrogen evolution reaction. Catalysts 2023, 13, 1497.

[18]

Gao, H. Q.; Zang, J. B.; Liu, X. X.; Wang, Y. H.; Tian, P. F.; Zhou, S. Y.; Song, S. W.; Chen, P. P.; Li, W. Ruthenium and cobalt bimetal encapsulated in nitrogen-doped carbon material derived of ZIF-67 as enhanced hydrogen evolution electrocatalyst. Appl. Surf. Sci. 2019, 494, 101–110.

[19]
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res., in press, https://doi.org/10.1007/s12274-023-6037-8.
[20]

Yang, Y. J.; Yu, Y. H.; Li, J.; Chen, Q. R.; Du, Y. L.; Rao, P.; Li, R. S.; Jia, C. M.; Kang, Z. Y.; Deng, P. L. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.

[21]

Cheng, F. P.; Peng, X. Y.; Hu, L. Z.; Yang, B.; Li, Z. J.; Dong, C. L.; Chen, J. L.; Hsu, L. C.; Lei, L. C.; Zheng, Q. et al. Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production. Nat. Commun. 2022, 13, 6486.

[22]

Yang, J.; Mohmad, A. R.; Wang, Y.; Fullon, R.; Song, X. J.; Zhao, F.; Bozkurt, I.; Augustin, M.; Santos, E. J. G.; Shin, H. S. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 2019, 18, 1309–1314.

[23]

Xia, J. W.; Volokh, M.; Peng, G. M.; Fu, Y. S.; Wang, X.; Shalom, M. Low-cost porous ruthenium layer deposited on nickel foam as a highly active universal-pH electrocatalyst for the hydrogen evolution reaction. ChemSusChem 2019, 12, 2780–2787.

[24]

Luo, W. J.; Wang, Y. J.; Cheng, C. W. Ru-based electrocatalysts for hydrogen evolution reaction: Recent research advances and perspectives. Mater. Today Phys. 2020, 15, 100274.

[25]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[26]

Nguyen, T. B.; Sherpa, K.; Chen, C. W.; Chen, L.; Dong, C. D. Breakthroughs and prospects in ruthenium-based electrocatalyst for hydrogen evolution reaction. J. Alloys Compd. 2023, 968, 172020.

[27]
Tang, R. R.; Yang, Y.; Zhou, Y. T.; Yu, X. Y. Rational design of heterostructured Ru cluster-based catalyst for pH universal hydrogen evolution reaction and high-performance Zn-H2O battery. Adv. Funct. Mater. , in press, https://doi.org/10.1002/adfm.202301925.
[28]

Chen, M.; Kitiphatpiboon, N.; Feng, C. R.; Abudula, A.; Ma, Y. F.; Guan, G. Q. Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review. eScience 2023, 3, 100111.

[29]

Wang, X.; Yu, M. H.; Feng, X. L. Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis. eScience 2023, 3, 100141.

[30]
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, https://doi.org/10.1007/s12274-023-5700-4.
[31]

Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 2024, 36, 2308653.

[32]

Li, J. C.; Yang, Z. Q.; Tang, D. M.; Zhang, L. L.; Hou, P. X.; Zhao, S. Y.; Liu, C.; Cheng, M.; Li, G. X.; Zhang, F. et al. N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Mater. 2018, 10, e461.

[33]

Ren, S. J.; Cui, W. X.; Li, L. X.; Yi, Z. G. N-doped carbon nanotubes as an efficient electrocatalyst for O2 conversion to H2O2 in neutral electrolyte. Sustain. Energy Fuels 2021, 5, 6310–6314.

[34]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[35]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[36]

Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

[37]

Romero, N.; Fenoll, D. A.; Gil, L.; Campos, S.; Creus, J.; Martí, G.; Heras-Domingo, J.; Collière, V.; Mesa, C. A.; Giménez, S. et al. Ru-based nanoparticles supported on carbon nanotubes for electrocatalytic hydrogen evolution: Structural and electronic effects. Inorg. Chem. Front. 2023, 10, 5885–5896.

[38]

Wang, J. G.; Liu, H. Z.; Zhang, X. Y.; Li, X.; Liu, X. R.; Kang, F. Y. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 2018, 14, 1703950.

[39]

Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

[40]

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

[41]
Yuan, J. X.; Zhou, J. S.; Peng, Z. H.; Li, G.; Hou, Y.; Leung, M. K. H. Enhanced electrocatalytic hydrogen evolution in alkaline saline electrolyte by NiCo foam supported iridium nanoclusters. J. Mater. Chem. A, in press, https://doi.org/10.1039/D3TA05421G.
[42]

Park, S.; Liu, L. H.; Demirkır, Ç.; van der Heijden, O.; Lohse, D.; Krug, D.; Koper, M. T. M. Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution. Nat. Chem. 2023, 15, 1532–1540.

[43]

Zhang, Y.; Ma, C. Q.; Zhu, X. J.; Qu, K. Y.; Shi, P. D.; Song, L. Y.; Wang, J.; Lu, Q. P.; Wang, A. L. Hetero-interface manipulation in MoO x @Ru to evoke industrial hydrogen production performance with current density of 4000 mA·cm−2. Adv. Energy Mater. 2023, 13, 2301492.

[44]

Zhao, J. Y.; Guo, H. R.; Li, Y. Y.; Zheng, L. R.; Ren, H.; Zhao, L. Y.; Song, R. Anchoring Ru nanoclusters to defect-rich polymeric carbon nitride as a bifunctional electrocatalyst for highly efficient overall water splitting. J. Mater. Chem. A 2023, 11, 18375–18386.

[45]

Liu, X. Y.; Gong, L. H.; Wang, L. W.; Chang, C. Q.; Su, P. P.; Dou, Y. H.; Dou, S. X.; Li, Y.; Gong, F. L.; Liu, J. Enabling ultrafine Ru nanoparticles with tunable electronic structures via a double-shell hollow interlayer confinement strategy toward enhanced hydrogen evolution reaction performance. Nano Lett. 2024, 24, 592–600.

[46]

Wu, Q. K.; Yang, X. B.; Yang, J.; Liu, P. F.; Ding, G. X.; Chen, Z.; Liao, G. F. Size effect of ruthenium nanoparticles on water cracking properties with different crystal planes for boosting electrocatalytic hydrogen evolution. J. Colloid Interface Sci. 2023, 644, 238–245.

[47]
Wu, M. Y.; Fan, X. L.; Zhang, W. B.; Chen, B.; Ye, T.; Zhang, Q.; Fang, Y. Y.; Wang, Y. J.; Tang, Y. Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2023.109258.
[48]

Feng, Y. L.; Zhang, S. F.; Zhu, L. H.; Li, G. D.; Zhao, N.; Zhang, H.; Chen, B. H. Reduced graphene oxide-supported ruthenium nanocatalysts for highly efficient electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 39853–39863.

[49]

Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

[50]

Deng, L. M.; Hu, F.; Ma, M. Y.; Huang, S. C.; Xiong, Y. X.; Chen, H. Y.; Li, L. L.; Peng, S. J. Electronic Modulation caused by interfacial Ni–O–M (M = Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics. Angew. Chem., Int. Ed. 2021, 60, 22276–22282.

[51]

Wang, S. Y.; Ning, X. R.; Liu, X. H.; Shakouri, M.; Hu, Y. F.; Yuan, H. Y.; Liu, P. F.; Lu, X. Y.; Guo, Y.; Wang, Y. Q. Ruthenium co-anchored by nitrogen and oxygen on lignin derived carbon for high-efficient hydrogen evolution. Carbon 2024, 217, 118611.

[52]

Chen, C. H.; Wu, D. Y.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.

Video
12274_2024_6507_MOESM2_ESM.mp4
File
12274_2024_6507_MOESM1_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 December 2023
Revised: 17 January 2024
Accepted: 18 January 2024
Published: 22 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFA1600800) and the National Natural Science Foundation of China (No. 22022508).

Return