Journal Home > Volume 17 , Issue 6

Solid strong base catalysts have received considerable attention in various organic reactions due to their facile separation, neglectable corrosion, and environmental friendliness. Although great progress has been made in the preparation of solid strong base catalysts, it is still challenging to avoid basic sites aggregation on support and active sites loss in reaction system. Here, we report a tandem redox strategy to prepare Na single atoms on graphene, producing a new kind of solid strong base catalyst (Na1/G). The base precursor NaNO3 was first reduced to Na2O by graphene (400 °C) and successively to single atoms Na anchored on the graphene vacancies (800 °C). Owing to the atomically dispersed of basicity, the resultant catalyst presents high activity toward the transesterification of methanol and ethylene carbonate to synthesize dimethyl carbonate (turnover frequency (TOF) value: 125.7 h−1), which is much better than the conventional counterpart Na2O/G and various reported solid strong bases (TOF: 1.0–90.1 h−1). Furthermore, thanks to the basicity anchored on graphene, the Na1/G catalyst shows excellent durability during cycling. This work may provide a new direction for the development of solid strong base catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Graphene-anchored sodium single atoms: A highly active and stable catalyst for transesterification reaction

Show Author's information Song-Song Peng1,§Yao Nian2,§Xing-Ru Song1Xiang-Bin Shao1Chen Gu1Zhi-Wei Xing1Shi-Chao Qi1Peng Tan1You Han2,3Xiao-Qin Liu1Lin-Bing Sun1( )
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

§ Song-Song Peng and Yao Nian contributed equally to this work.

Abstract

Solid strong base catalysts have received considerable attention in various organic reactions due to their facile separation, neglectable corrosion, and environmental friendliness. Although great progress has been made in the preparation of solid strong base catalysts, it is still challenging to avoid basic sites aggregation on support and active sites loss in reaction system. Here, we report a tandem redox strategy to prepare Na single atoms on graphene, producing a new kind of solid strong base catalyst (Na1/G). The base precursor NaNO3 was first reduced to Na2O by graphene (400 °C) and successively to single atoms Na anchored on the graphene vacancies (800 °C). Owing to the atomically dispersed of basicity, the resultant catalyst presents high activity toward the transesterification of methanol and ethylene carbonate to synthesize dimethyl carbonate (turnover frequency (TOF) value: 125.7 h−1), which is much better than the conventional counterpart Na2O/G and various reported solid strong bases (TOF: 1.0–90.1 h−1). Furthermore, thanks to the basicity anchored on graphene, the Na1/G catalyst shows excellent durability during cycling. This work may provide a new direction for the development of solid strong base catalysts.

Keywords: graphene, redox, basic sites, solid strong base catalyst, single Na atoms

References(53)

[1]

Shang, Y. N.; Xu, X.; Gao, B. Y.; Wang, S. B.; Duan, X. G. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322.

[2]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[3]

Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

[4]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[5]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[6]

Liang, J.; Liang, Z. B.; Zou, R. Q.; Zhao, Y. L. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater. 2017, 29, 1701139.

[7]

Zhu, L.; Liu, X. Q.; Jiang, H. L.; Sun, L. B. Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev. 2017, 117, 8129–8176.

[8]

Shao, X. B.; Nian, Y.; Peng, S. S.; Zhang, G. S.; Gu, M. X.; Han, Y.; Liu, X. Q.; Sun, L. B. Magnesium single-atom catalysts with superbasicity. Sci. China Chem. 2023, 66, 1737–1743.

[9]

Peng, S. S.; Shao, X. B.; Li, Y. X.; Jiang, Y.; Gu, C.; Dinker, M. K.; Liu, X. Q.; Sun, L. B. Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Res. 2022, 15, 2905–2912.

[10]

Peng, S. S.; Zhang, G. S.; Shao, X. B.; Gu, C.; Liu, X. Q.; Sun, L. B. Generation of strong basicity in metal-organic frameworks: How do coordination solvents matter. ACS Appl. Mater. Interfaces 2022, 14, 8058–8065.

[11]

Liu, N.; Wu, Z. M.; Li, M.; Li, S. S.; Li, Y. F.; Yu, R. D.; Pan, L. S.; Liu, Y. J. A novel strategy for constructing mesoporous solid superbase catalysts: Bimetallic Al-La oxides supported on SBA-15 modified with KF. Catal. Sci. Technol. 2017, 7, 725–733.

[12]

Li, T. T.; Sun, L. B.; Gong, L.; Liu, X. Y.; Liu, X. Q. In situ generation of superbasic sites on mesoporous ceria and their application in transesterification. J. Mol. Catal. A: Chem. 2012, 352, 38–44.

[13]

Liu, X. Y.; Sun, L. B.; Lu, F.; Li, T. T.; Liu, X. Q. Constructing mesoporous solid superbases by a dualcoating strategy. J. Mater. Chem. A 2013, 1, 1623–1631.

[14]

Peng, S. S.; Lu, J.; Li, T. T.; Tan, P.; Gu, C.; Wu, Z. Y.; Liu, X. Q.; Sun, L. B. Significant decrease in activation temperature for the generation of strong basicity: A strategy of endowing supports with reducibility. Inorg. Chem. 2019, 58, 8003–8011.

[15]

Sun, L. B.; Liu, X. Q.; Zhou, H. C. Design and fabrication of mesoporous heterogeneous basic catalysts. Chem. Soc. Rev. 2015, 44, 5092–5147.

[16]

Zhu, G. Z.; Shi, S.; Liu, M.; Zhao, L.; Wang, M.; Zheng, X.; Gao, J.; Xu, J. Formation of strong basicity on covalent triazine frameworks as catalysts for the oxidation of methylene compounds. ACS Appl. Mater. Interfaces 2018, 10, 12612–12617.

[17]

Li, T. T.; Gao, X. J.; Qi, S. C.; Huang, L.; Peng, S. S.; Liu, W.; Liu, X. Q.; Sun, L. B. Potassium-incorporated mesoporous carbons: Strong solid bases with enhanced catalytic activity and stability. Catal. Sci. Technol. 2018, 8, 2794–2801.

[18]

Liu, W.; Zhu, L.; Jiang, Y.; Liu, X. Q.; Sun, L. B. Direct fabrication of strong basic sites on ordered nanoporous materials: Exploring the possibility of metal-organic frameworks. Chem. Mater. 2018, 30, 1686–1694.

[19]

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

[20]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[21]

Zheng, H. R.; Wang, S. B.; Liu, S. J.; Wu, J.; Guan, J. P.; Li, Q.; Wang, Y. C.; Tao, Y.; Hu, S. Y.; Bai, Y. et al. The heterointerface between Fe1/NC and selenides boosts reversible oxygen electrocatalysis. Adv. Funct. Mater. 2023, 33, 2300815.

[22]

Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.

[23]

Jiang, Y. X.; Rong, H. T.; Wang, Y. F.; Liu, S. G.; Xu, P.; Luo, Z.; Guo, L. M.; Zhu, T.; Rong, H. P.; Wang, D. S. et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. 2023, 16, 9752–9759.

[24]

Peng, S. S.; Shao, X. B.; Gu, M. X.; Zhang, G. S.; Gu, C.; Nian, Y.; Jia, Y. M.; Han, Y.; Liu, X. Q.; Sun, L. B. Catalytically stable potassium single-atom solid superbases. Angew. Chem., Int. Ed. 2022, 61, e202215157.

[25]

Wang, Z.; Jin, X. Y.; Xu, R. J.; Yang, Z. B.; Ma, S. D.; Yan, T.; Zhu, C.; Fang, J.; Liu, Y. P.; Hwang, S. J. et al. Cooperation between dual metal atoms and nanoclusters enhances activity and stability for oxygen reduction and evolution. ACS Nano 2023, 17, 8622–8633.

[26]

Chen, Z. Y.; Wang, C. H.; Zhong, X.; Lei, H.; Li, J. W.; Ji, Y.; Liu, C. X.; Ding, M.; Dai, Y. Z.; Li, X. et al. Achieving efficient CO2 electrolysis to CO by local coordination manipulation of nickel single-atom catalysts. Nano Lett. 2023, 23, 7046–7053.

[27]

Lian, X. Y.; Zhou, J. H.; You, Y. Z.; Tian, Z. N.; Yi, Y. Y.; Choi, J. H.; Rümmeli, M. H.; Sun, J. Y. Boosting K+ capacitive storage in dual-doped carbon crumples with B-N moiety via a general protic-salt synthetic strategy. Adv. Funct. Mater. 2022, 32, 2109969.

[28]

Lu, Z. X.; Wang, J.; Feng, W. L.; Yin, X. P.; Feng, X. C.; Zhao, S. Y.; Li, C. X.; Wang, R. X.; Huang, Q. A.; Zhao, Y. F. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 2023, 35, 2211461.

[29]

Wang, B.; Zhu, X.; Pei, X. D.; Liu, W. G.; Leng, Y. C.; Yu, X. W.; Wang, C.; Hu, L. H.; Su, Q. M.; Wu, C. P. et al. Room-temperature laser planting of high-loading single-atom catalysts for high-efficiency electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2023, 145, 13788–13795.

[30]

T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

[31]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[32]

Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.

[33]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[34]

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. 2017, 129, 7041–7045.

[35]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[36]

Fang, G. Q.; Wei, F. F.; Lin, J.; Zhou, Y. L.; Sun, L.; Shang, X.; Lin, S.; Wang, X. D. Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. J. Am. Chem. Soc. 2023, 145, 13169–13180.

[37]

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

[38]

Gan, T.; He, Q.; Zhang, H.; Xiao, H. J.; Liu, Y. F.; Zhang, Y.; He, X. H.; Ji, H. B. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 2020, 389, 124490.

[39]

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

[40]

Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 14031–14035.

[41]

Chen, Y. X.; Gao, J. Y.; Huang, Z. W.; Zhou, M. J.; Chen, J. X.; Li, C.; Ma, Z.; Chen, J. M.; Tang, X. F. Sodium rivals silver as single-atom active centers for catalyzing abatement of formaldehyde. Environ. Sci. Technol. 2017, 51, 7084–7090.

[42]

Wei, S. J.; Sun, Y. B.; Qiu, Y. Z.; Li, A.; Chiang, C. Y.; Xiao, H.; Qian, J. S; Li, Y. D. Self-carbon-thermal-reduction strategy for boosting the fenton-like activity of single Fe-N4 sites by carbon-defect engineering. Nat. Commun. 2023, 14, 7549.

[43]

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

[44]

Zhao, X. L.; Wu, G.; Zheng, X. S.; Jiang, P.; Yi, J. D.; Zhou, H.; Gao, X. P.; Yu, Z. Q.; Wu, Y. E. A double atomic-tuned RuBi SAA/Bi@OG nanostructure with optimum charge redistribution for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202300879.

[45]

Wu, Z. L.; Huang, B. K.; Wang, X. H.; He, C. S.; Liu, Y.; Du, Y.; Liu, W.; Xiong, Z. K.; Lai, B. Facilely tuning the first-shell coordination microenvironment in iron single-atom for Fenton-like chemistry toward highly efficient wastewater purification. Environ. Sci. Technol. 2023, 57, 14046–14057.

[46]

Wang, L. X.; Gao, X. P.; Wang, S. C.; Chen, C.; Song, J.; Ma, X. H.; Yao, T.; Zhou, H.; Wu, Y. E. Axial dual atomic sites confined by layer stacking for electroreduction of CO2 to tunable syngas. J. Am. Chem. Soc. 2023, 145, 13462–13468.

[47]

Hou, Z. Q.; Lu, Y.; Liu, Y. X.; Liu, N.; Hu, J. C.; Wei, L.; Li, Z. Y.; Tian, X. R.; Gao, R. Y.; Yu, X. H. et al. A general dual-metal nanocrystal dissociation strategy to generate robust high-temperature-stable alumina-supported single-atom catalysts. J. Am. Chem. Soc. 2023, 145, 15869–15878.

[48]

Liu, S.; Li, Z. D.; Wang, C. L.; Tao, W. W.; Huang, M. X.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L. J.; Chen, S. et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.

[49]

Wang, Q. Y.; Liu, K.; Fu, J. W.; Cai, C.; Li, H. J. W.; Long, Y.; Chen, S. Y.; Liu, B.; Li, H. M.; Li, W. Z. et al. Atomically dispersed s-block magnesium sites for electroreduction of CO2 to CO. Angew. Chem., Int. Ed. 2021, 60, 25241–25245.

[50]

Ji, S. F.; Chen, Y. J.; Zhao, G. F.; Wang, Y.; Sun, W. M.; Zhang, Z. D.; Lu, Y.; Wang, D. S. Atomic-level insights into the steric hindrance effect of single-atom Pd catalyst to boost the synthesis of dimethyl carbonate. Appl. Catal. B: Environ. 2022, 304, 120922.

[51]

Lee, K. M.; Jang, J. H.; Balamurugan, M.; Kim, J. E.; Jo, Y. I.; Nam, K. T. Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate. Nat. Energy 2021, 6, 733–741.

[52]

Pei, Y. L.; Quan, Y. H.; Wang, X. H.; Zhao, J. X.; Shi, R. N.; Li, Z.; Ren, J. Surface reconstruction induced highly efficient N-doped carbon nanosheet supported copper cluster catalysts for dimethyl carbonate synthesis. Appl. Catal. B: Environ 2022, 300, 120718.

[53]

Li, L.; Liu, W. X.; Chen, R. H.; Shang, S.; Zhang, X. D.; Wang, H.; Zhang, H. J.; Ye, B. J.; Xie, Y. Atom-economical synthesis of dimethyl carbonate from CO2: Engineering reactive frustrated Lewis pairs on ceria with vacancy clusters. Angew. Chem., Int. Ed. 2022, 61, e202214490.

File
12274_2024_6506_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 October 2023
Revised: 09 January 2024
Accepted: 18 January 2024
Published: 07 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 22125804), the National Natural Science Foundation of China (Nos. 22078155 and 22178163), and the Jiangsu Funding Program for Excellent Postdoctoral Talent. We thank the BL08U1A beam station for XAFS measurements at Shanghai Synchrotron Radiation Facility (SSRF) and we are grateful to the High-Performance Computing Center of Nanjing Tech University for supporting the computational.

Return