Journal Home > Volume 17 , Issue 6

Reconstruction of supported nanocatalysts often occurs in gas–solid reactions and significantly affects the catalytic performance, yet it is much less explored in liquid-phase environment. Herein, we find that highly-dispersed Ag nanocatalysts, i.e., AgOx clusters, supported on alumina, silica, and titania, can aggregate into larger Ag or Ag2O particles after immersing in liquid-phase media at room temperature. The spontaneous aggregation of AgOx clusters in liquid water is attributed to liquid-phase Ostwald ripening through dissolution of AgOx clusters into water and subsequent redeposition to form Ag2O particles. The immersion into organic solvents such as ethanol leads to reduction of AgOx clusters and further growth into Ag particles. This work reveals that liquid-phase reaction media can induce substantial structural evolution of supported nanostructured catalysts, which should be carefully considered in liquid–solid interface catalytic reactions such as electrocatalysis, environmental catalysis, and organic synthesis in liquid phase.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Liquid-mediated Ostwald ripening of Ag-based clusters supported on oxides

Show Author's information Conghui Liu1,2Rongtan Li2Yamei Fan2Shiwen Li2Xiaohui Feng2Lu Feng2Yanxiao Ning2Qiang Fu2( )
School of Chemistry, Dalian University of Technology, Dalian 116024, China
State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China

Abstract

Reconstruction of supported nanocatalysts often occurs in gas–solid reactions and significantly affects the catalytic performance, yet it is much less explored in liquid-phase environment. Herein, we find that highly-dispersed Ag nanocatalysts, i.e., AgOx clusters, supported on alumina, silica, and titania, can aggregate into larger Ag or Ag2O particles after immersing in liquid-phase media at room temperature. The spontaneous aggregation of AgOx clusters in liquid water is attributed to liquid-phase Ostwald ripening through dissolution of AgOx clusters into water and subsequent redeposition to form Ag2O particles. The immersion into organic solvents such as ethanol leads to reduction of AgOx clusters and further growth into Ag particles. This work reveals that liquid-phase reaction media can induce substantial structural evolution of supported nanostructured catalysts, which should be carefully considered in liquid–solid interface catalytic reactions such as electrocatalysis, environmental catalysis, and organic synthesis in liquid phase.

Keywords: Ostwald ripening, Ag catalysts, liquid phase media, dissolution–deposition process

References(51)

[1]

Strizhak, P. E. Nanosize effects in heterogeneous catalysis. Theor. Exp. Chem. 2013, 49, 2–21.

[2]

Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.

[3]

Tanabe, T.; Nagai, Y.; Dohmae, K.; Sobukawa, H.; Shinjoh, H. Sintering and redispersion behavior of Pt on Pt/MgO. J. Catal. 2008, 257, 117–124.

[4]

Che, M.; Bennett, C. O. The influence of particle size on the catalytic properties of supported metals. Adv. Catal. 1989, 36, 55–172.

[5]

Piccolo, L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal. Today 2021, 373, 80–97.

[6]

Liu, C. H.; Li, R. T.; Wang, F.; Li, K.; Fan, Y. M.; Mu, R. T.; Fu, Q. Water promoted structural evolution of Ag nanocatalysts supported on alumina. Nano Res. 2023, 16, 9107–9115.

[7]

Plessow, P. N.; Abild-Pedersen, F. Sintering of Pt nanoparticles via volatile PtO2: Simulation and comparison with experiments. ACS Catal. 2016, 6, 7098–7108.

[8]

Argyle, M. D.; Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269.

[9]

Yan, D. X.; Chen, J.; Jia, H. P. Temperature-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst. Angew. Chem., Int. Ed. 2020, 59, 13562–13567.

[10]

Huang, W. X.; Johnston-Peck, A. C.; Wolter, T.; Yang, W. C. D.; Xu, L.; Oh, J.; Reeves, B. A.; Zhou, C. S.; Holtz, M. E.; Herzing, A. A. et al. Steam-created grain boundaries for methane C–H activation in palladium catalysts. Science 2021, 373, 1518–1523.

[11]

Dong, J. H.; Fu, Q.; Li, H. B.; Xiao, J. P.; Yang, B.; Zhang, B. S.; Bai, Y. X.; Song, T. Y.; Zhang, R. K.; Gao, L. J. et al. Reaction-induced strong metal–support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 2020, 142, 17167–17174.

[12]

Jeong, H.; Shin, D.; Kim, B. S.; Bae, J.; Shin, S.; Choe, C.; Han, J. W.; Lee, H. Controlling the oxidation state of Pt single atoms for maximizing catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 20691–20696.

[13]

Zhu, J.; Wang, P.; Zhang, X. B.; Zhang, G. H.; Li, R. T.; Li, W. H.; Senftle, T. P.; Liu, W.; Wang, J. Y.; Wang, Y. L. et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation. Sci. Adv. 2022, 8, eabm3629.

[14]

Parkinson, G. S.; Novotny, Z.; Argentero, G.; Schmid, M.; Pavelec, J.; Kosak, R.; Blaha, P.; Diebold, U. Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat. Mater. 2013, 12, 724–728.

[15]

Wang, M. R.; Wang, P.; Zhang, G. H.; Cheng, Z.; Zhang, M. M.; Liu, Y. L.; Li, R. T.; Zhu, J.; Wang, J. Y.; Bian, K. et al. Stabilizing Co2C with H2O and K promoter for CO2 hydrogenation to C2+ hydrocarbons. Sci. Adv. 2023, 9, eadg0167.

[16]

Besson, M.; Gallezot, P. Deactivation of metal catalysts in liquid phase organic reactions. Catal. Today 2003, 81, 547–559.

[17]

Gallezot, P.; Cerino, P. J.; Blanc, B.; Flèche, G.; Fuertes, P. Glucose hydrogenation on promoted raney-nickel catalysts. J. Catal. 1994, 146, 93–102.

[18]

Besson, M.; Gallezot, P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 2000, 57, 127–141.

[19]

Ravenelle, R. M.; Copeland, J. R.; Kim, W. G.; Crittenden, J. C.; Sievers, C. Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catal. 2011, 1, 552–561.

[20]

Harsányi, G. Irregular effect of chloride impurities on migration failure reliability: Contradictions or understandable. Microelectron. Reliab. 1999, 39, 1407–1411.

[21]

Bañuelos, J. L.; Borguet, E.; Brown, G. E., Jr.; Cygan, R. T.; DeYoreo, J. J.; Dove, P. M.; Gaigeot, M. P.; Geiger, F. M.; Gibbs, J. M.; Grassian, V. H. et al. Oxide- and silicate-water interfaces and their roles in technology and the environment. Chem. Rev. 2023, 123, 6413–6544.

[22]

Ritzer, B.; Villegas, M. A.; Fernández Navarro, J. M. Influence of temperature and time on the stability of silver in silica sol-gel glasses. J. Sol-Gel Sci. Technol. 1997, 8, 917–921.

[23]

Liu, J. Y.; Hurt, R. H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169–2175.

[24]

Mallat, T.; Bodnar, Z.; Hug, P.; Baiker, A. Selective oxidation of cinnamyl alcohol to cinnamaldehyde with air over Bi-Pt/alumina catalysts. J. Catal. 1995, 153, 131–143.

[25]

Glover, R. D.; Miller, J. M.; Hutchison, J. E. Generation of metal nanoparticles from silver and copper objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 2011, 5, 8950–8957.

[26]

Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879.

[27]

Wang, F.; Ma, J. Z.; Xin, S. H.; Wang, Q.; Xu, J.; Zhang, C. B.; He, H.; Zeng, X. C. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance. Nat. Commun. 2020, 11, 529.

[28]

Li, R. T.; Xu, X. Y.; Zhu, B. E.; Li, X. Y.; Ning, Y. X.; Mu, R. T.; Du, P. F.; Li, M. W.; Wang, H. K.; Liang, J. J. et al. In situ identification of the metallic state of Ag nanoclusters in oxidative dispersion. Nat. Commun. 2021, 12, 1406

[29]

Fan, Y. M.; Wang, F.; Li, R. T.; Liu, C. H.; Fu, Q. Surface hydroxyl-determined migration and anchoring of silver on alumina in oxidative redispersion. ACS Catal. 2023, 13, 2277–2285.

[30]

Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem., Int. Ed. 2012, 51, 4198–4203.

[31]

Schön, G. ESCA studies of Ag, Ag2O and AgO. Acta Chem. Scand. 1973, 27, 2623–2633.

[32]

Moretti, G. The Wagner plot and the Auger parameter as tools to separate initial- and final-state contributions in X-ray photoemission spectroscopy. Surf. Sci. 2013, 618, 3–11.

[33]

Aspromonte, S. G.; Mizrahi, M. D.; Schneeberger, F. A.; López, J. M. R.; Boix, A. V. Study of the nature and location of silver in Ag-exchanged mordenite catalysts. Characterization by spectroscopic techniques. J. Phys. Chem. C 2013, 117, 25433–25442.

[34]

Wagner, C. D. Auger parameter in electron spectroscopy for the identification of chemical species. Anal. Chem. 1975, 47, 1201–1203.

[35]

German, R. M. Coarsening in sintering: Grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems. Crit. Rev. Solid State Mater. Sci. 2010, 35, 263–305.

[36]

Meijerink, M. J.; de Jong, K. P.; Zečević, J. Growth of supported gold nanoparticles in aqueous phase studied by in situ transmission electron microscopy. J. Phys. Chem. C 2019, 124, 2202–2212.

[37]

Khelfa, A.; Nelayah, J.; Amara, H.; Wang, G.; Ricolleau, C.; Alloyeau, D. Quantitative in situ visualization of thermal effects on the formation of gold nanocrystals in solution. Adv. Mater. 2021, 33, 2102514.

[38]

Wang, F.; Li, Z.; Wang, H. H.; Chen, M.; Zhang, C. B.; Ning, P.; He, H. Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability. Nano Res. 2022, 15, 452–456.

[39]

Lamoth, M.; Plodinec, M.; Scharfenberg, L.; Wrabetz, S.; Girgsdies, F.; Jones, T.; Rosowski, F.; Horn, R.; Schlögl, R.; Frei, E. Supported Ag Nanoparticles and clusters for CO oxidation: Size effects and influence of the silver–oxygen interactions. ACS Appl. Nano Mater. 2019, 2, 2909–2920.

[40]

Piwoński, I.; Spilarewicz-Stanek, K.; Kisielewska, A.; Kądzioła, K.; Cichomski, M.; Ginter, J. Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings. Appl. Surf. Sci. 2016, 373, 38–44.

[41]

Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Sehested, J.; Helveg, S. Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 2010, 132, 7968–7975.

[42]

Yang, J. Y.; Huang, Y. K.; Qi, H. F.; Zeng, C. B.; Jiang, Q. K.; Cui, Y. T.; Su, Y.; Du, X. R.; Pan, X. L.; Liu, X. Y. et al. Modulating the strong metal–support interaction of single-atom catalysts via vicinal structure decoration. Nat. Commun. 2022, 13, 4244.

[43]

Childs, W. R.; Motala, M. J.; Lee, K. J.; Nuzzo, R. G. Masterless soft lithography: Patterning UV/ozone-induced adhesion on poly(dimethylsiloxane) surfaces. Langmuir 2005, 21, 10096–10105.

[44]

Lee, J. S.; Yu, J. H. Diffusion-controlled grain growth in liquid-phase sintering of W-Cu nanocomposites. Int. J. Mater. Res. 2001, 92, 663–668.

[45]

Zhang, D. S.; Liu, J.; Liang, C. H. Perspective on how laser-ablated particles grow in liquids. Sci. China Phys. Mech. Astron. 2017, 60, 074201.

[46]

Hermannsdörfer, J.; de Jonge, N.; Verch, A. Electron beam induced chemistry of gold nanoparticles in saline solution. Chem. Commun. 2015, 51, 16393–16396.

[47]

Qu, Z. P.; Huang, W. X.; Zhou, S. T.; Zheng, H.; Liu, X. M.; Cheng, M. J.; Bao, X. H. Enhancement of the catalytic performance of supported-metal catalysts by pretreatment of the support. J. Catal. 2005, 234, 33–36.

[48]

Menezes, W. G.; Neumann, B.; Zielasek, V.; Thiel, K.; Bäumer, M. Bimetallic AuAg nanoparticles: Enhancing the catalytic activity of Au for reduction reactions in the liquid phase by addition of Ag. ChemPhysChem 2013, 14, 1577–1581.

[49]

Kahri, H.; Sevim, M.; Metin, Ö. Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight. Nano Res. 2017, 10, 1627–1640.

[50]

Hansen, T. W.; DeLariva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening. Acc. Chem. Res. 2013, 46, 1720–1730.

[51]

Goodman, E. D.; Carlson, E. Z.; Dietze, E. M.; Tahsini, N.; Johnson, A.; Aitbekova, A.; Nguyen Taylor, T.; Plessow, P. N.; Cargnello, M. Size-controlled nanocrystals reveal spatial dependence and severity of nanoparticle coalescence and Ostwald ripening in sintering phenomena. Nanoscale 2021, 13, 930–938.

File
12274_2024_6503_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 November 2023
Revised: 05 January 2024
Accepted: 18 January 2024
Published: 14 March 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by National Key Research and Development Program of China (Nos. 2021YFA1502800, 2022YFA1504800, and 2022YFA1504500), the National Natural Science Foundation of China (Nos. 21825203, 22288201, 22332006, and 22321002), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB0600300), the Fundamental Research Funds for the Central Universities (No. 20720220009), and Photon Science Center for Carbon Neutrality.

Return