Journal Home > Online First

Despite the high energy density of lithium metal batteries (LMBs), their application in rechargeable batteries is still hampered due to insufficient safety. Here, we present a novel flame-retardant solid-state electrolyte based on polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) with nano SiO2 aerogel as an inert filler but Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as an auxiliary component to enhance the ion conductivity. The introduction of SiO2 aerogels imparts the polymer electrolyte with exceptional thermal stability and flame retardancy. Simultaneously, the interaction between hydroxyl groups of SiO2 particles and PVDF-HFP creates a strong cross-linking structure, enhancing the mechanical strength and stability of the electrolyte. Furthermore, the presence of SiO2 aerogel and LLZTO facilitates the dissociation of lithium salts through Lewis acid-base interactions, resulting in a high ionic conductivity of 1.01 × 10−3 S·cm−1 and a wide electrochemical window of ~ 5.0 V at room temperature for the prepared electrolytes. Remarkably, the assembled Li|Li cell demonstrates the excellent resistance to lithium dendrite and runs stablly for over 1500 h at a current density of 0.25 mA·cm−2. Thus, we prepare a pouch cell with high safety, which can work normally after short-circuiting under the external folding and cutting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dual-filler reinforced PVDF-HFP based polymer electrolyte enabling high-safety design of lithium metal batteries

Show Author's information Chang Fang,§Kangsheng Huang,§Jing ZhaoShiqi TianHui Dou( )Xiaogang Zhang( )
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

§ Chang Fang and Kangsheng Huang contributed equally to this work.

Abstract

Despite the high energy density of lithium metal batteries (LMBs), their application in rechargeable batteries is still hampered due to insufficient safety. Here, we present a novel flame-retardant solid-state electrolyte based on polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) with nano SiO2 aerogel as an inert filler but Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as an auxiliary component to enhance the ion conductivity. The introduction of SiO2 aerogels imparts the polymer electrolyte with exceptional thermal stability and flame retardancy. Simultaneously, the interaction between hydroxyl groups of SiO2 particles and PVDF-HFP creates a strong cross-linking structure, enhancing the mechanical strength and stability of the electrolyte. Furthermore, the presence of SiO2 aerogel and LLZTO facilitates the dissociation of lithium salts through Lewis acid-base interactions, resulting in a high ionic conductivity of 1.01 × 10−3 S·cm−1 and a wide electrochemical window of ~ 5.0 V at room temperature for the prepared electrolytes. Remarkably, the assembled Li|Li cell demonstrates the excellent resistance to lithium dendrite and runs stablly for over 1500 h at a current density of 0.25 mA·cm−2. Thus, we prepare a pouch cell with high safety, which can work normally after short-circuiting under the external folding and cutting.

Keywords: long cycle life, polymer electrolyte, lithium metal battery, non-flammable, SiO2/Li6.4La3Zr1.4Ta0.6O12 (LLZTO) dual-filler

References(45)

[1]

Abdul, D.; Wenqi, J.; Tanveer, A. Environmental stewardship: Analyzing the dynamic impact of renewable energy, foreign remittances, and globalization index on China’s CO2 emissions. Renew. Energy 2022, 201, 418–425.

[2]

Jin, T.; Liu, M.; Su, K.; Lu, Y.; Cheng, G.; Liu, Y.; Li, N. W.; Yu, L. Polymer zwitterion-based artificial interphase layers for stable lithium metal anodes. ACS Appl. Mater. Interfaces 2021, 13, 57489–57496.

[3]

Zhang, L. Q.; Zhu, C. X.; Yu, S. C.; Ge, D. H.; Zhou, H. S. Status and challenges facing representative anode materials for rechargeable lithium batteries. J. Energy Chem. 2022, 66, 260–294.

[4]

Lv, Z. S.; Li, W. L.; Yang, L.; Loh, X. J.; Chen, X. D. Custom-made electrochemical energy storage devices. ACS Energy Lett. 2019, 4, 606–614.

[5]

Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436.

[6]
Wei, T.; Zhou, Y. Y.; Sun, C.; Guo, X. T.; Xu, S. D.; Chen, D. F.; Tang, Y. F. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res., in press, https://doi.org/10.1007/s12274-023-6187-8.
DOI
[7]

Yin, Y. J.; Yang, Y. Y. C.; Cheng, D. Y.; Mayer, M.; Holoubek, J.; Li, W. K.; Raghavendran, G.; Liu, A.; Lu, B. Y.; Davies, D. M. et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nat. Energy 2022, 7, 548–559.

[8]

Huang, K. S.; Bi, S.; Kurt, B.; Xu, C. Y.; Wu, L. Y.; Li, Z. W.; Feng, G.; Zhang, X. G. Regulation of SEI formation by anion receptors to achieve ultra-stable lithium-metal batteries. Angew. Chem., Int. Ed. 2021, 60, 19232–19240.

[9]

Lv, Q.; Song, Y. J.; Wang, B.; Wang, S. J.; Wu, B. C.; Jing, Y. T.; Ren, H. Z.; Yang, S. B.; Wang, L.; Xiao, L. H. et al. Bifunctional flame retardant solid-state electrolyte toward safe Li metal batteries. J. Energy Chem. 2023, 81, 613–622.

[10]

Li, Y. H.; Li, Y.; Zhang, L. L.; Tao, H. C.; Li, Q. Y.; Zhang, J. J.; Yang, X. L. Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries. J. Energy Chem. 2023, 77, 123–136.

[11]

Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Electrospun core–shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 2017, 3, e1601978.

[12]

Zhao, C.; Pan, Y.; Li, R. J.; Hu, A. J.; Zhou, B.; He, M.; Chen, J. H.; Yan, Z. F.; Fan, Y. N.; Chen, N. et al. A safe anode-free lithium metal pouch cell enabled by integrating stable quasi-solid electrolytes with oxygen-free cathodes. Chem. Eng. J. 2023, 463, 142386.

[13]

Krishnan, V. G.; Rosely, C. V. S.; Leuteritz, A.; Gowd, E. B. High-strength, flexible, hydrophobic, sound-absorbing, and flame-retardant poly(vinyl alcohol)/polyelectrolyte complex aerogels. ACS Appl. Polym. Mater. 2022, 4, 5113–5124.

[14]

Zhou, B. H.; Jo, Y. H.; Wang, R.; He, D.; Zhou, X. P.; Xie, X. L.; Xue, Z. G. Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries. J. Mater. Chem. A 2019, 7, 10354–10362.

[15]

Zhang, Z.; Huang, Y.; Gao, H.; Li, C.; Hang, J. X.; Liu, P. B. MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries. J. Energy Chem. 2021, 60, 259–271.

[16]

Li, R. Y.; Hua, H. M.; Zeng, Y. J.; Yang, J.; Chen, Z. Q.; Zhang, P.; Zhao, J. B. Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path. J. Energy Chem. 2022, 64, 395–403.

[17]

Yao, M.; Ruan, Q. Q.; Yu, T. H.; Zhang, H. T.; Zhang, S. J. Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Mater. 2022, 44, 93–103.

[18]

Yu, J.; Zhou, G. D.; Li, Y. Q.; Wang, Y. H.; Chen, D. J.; Ciucci, F. Improving room-temperature Li-metal battery performance by in situ creation of fast Li+ transport pathways in a polymer-ceramic electrolyte. Small 2023, 19, 2302691.

[19]

Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem., Int. Ed. 2021, 60, 12931–12940.

[20]

Xu, F. L.; Deng, S. G.; Guo, Q. Y.; Zhou, D.; Yao, X. Y. Quasi-Ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2||Li batteries with rigid-flexible coupling interphase. Small Methods 2021, 5, 2100262.

[21]

Zhang, J. M.; Zeng, Y. P.; Li, Q. P.; Tang, Z.; Sun, D.; Huang, D.; Zhao, L.; Tang, Y. G.; Wang, H. Y. Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Mater. 2023, 54, 440–449.

[22]

Xu, Y. N.; Wang, K.; An, Y. B.; Liu, W. J.; Li, C.; Zheng, S. H.; Zhang, X.; Wang, L.; Sun, X. Z.; Ma, Y. W. Rapid ion transport induced by the enhanced interaction in composite polymer electrolyte for all-solid-state lithium-metal batteries. J. Phys. Chem. Lett. 2021, 12, 10603–10609.

[23]

Arya, A.; Sharma, A. L. Polymer electrolytes for lithium ion batteries: A critical study. Ionics 2017, 23, 497–540.

[24]

Yang, H. X.; Liu, Z. K.; Wang, Y.; Li, N. W.; Yu, L. Multiscale structural gel polymer electrolytes with fast Li+ transport for long-life Li metal batteries. Adv. Funct. Mater. 2023, 33, 2209837.

[25]

Park, C. Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ion. 2003, 159, 111–119.

[26]

Krawiec, W.; Scanlon, L. G.; Fellner, J. P.; Vaia, R. A.; Vasudevan, S.; Giannelis, E. P. Polymer nanocomposites: A new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J. Power Sources 1995, 54, 310–315.

[27]

Shin, J. H.; Kim, K. W.; Ahn, H. J.; Ahn, J. H. Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3-Ti n O2 n −1 composite polymer electrolytes for lithium/sulfur battery. Mater. Sci. Eng. B 2002, 95, 148–156.

[28]

Zhang, T.; Li, J. F.; Li, X. X.; Wang, R. T.; Wang, C. X.; Zhang, Z. W.; Yin, L. W. A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries. Adv. Mater. 2022, 34, 2205575.

[29]

Zhou, Z. H.; Sun, T.; Cui, J.; Shen, X.; Shi, C.; Cao, S.; Zhao, J. B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. 2023, 16, 5080–5086.

[30]

Gu, Y. C.; Liu, H. Q. PVDF-HFP/LLZTO composite electrolytes with UV cure for solid-state lithium rechargeable batteries. J. Solid State Electrochem. 2023, 27, 2671–2679.

[31]

Chen, S. J.; Zhao, Y. R.; Yang, J.; Yao, L. L.; Xu, X. X. Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells. Ionics 2017, 23, 2603–2611.

[32]

Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074.

[33]

Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458.

[34]

Li, X. L.; Yang, L.; Shao, D. S.; Luo, K. L.; Liu, L.; Wu, Z. Y.; Luo, Z. G.; Wang, X. Y. Preparation and application of poly(ethylene oxide)-based all solid-state electrolyte with a walnut-like SiO2 as nano-fillers. J. Appl. Polym. Sci. 2020, 137, 48810.

[35]

Zhang, Y. B.; Feng, J. B.; Qin, J. D.; Zhong, Y. L.; Zhang, S. Q.; Wang, H.; Bell, J.; Guo, Z. P.; Song, P. A. Pathways to next-generation fire-safe alkali-ion batteries. Adv. Sci. 2023, 10, 2301056.

[36]

Han, L. F.; Wang, L.; Chen, Z. H.; Kan, Y. C.; Hu, Y.; Zhang, H.; He, X. M. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: A review. Adv. Funct. Mater. 2023, 33, 2300892.

[37]

Bi, L. N.; Wei, X. B.; Qiu, Y. H.; Song, Y. C.; Long, X.; Chen, Z.; Wang, S. Z.; Liao, J. X. A highly ionic transference number eutectogel hybrid electrolytes based on spontaneous coupling inhibitor for solid-state lithium metal batteries. Nano Res. 2023, 16, 1717–1725.

[38]

Xue, S. D.; Chen, S. M.; Fu, Y. D.; Zhu, H. Y.; Ji, Y. C.; Song, Y. L.; Pan, F.; Yang, L. Y. Revealing the role of active fillers in Li-ion conduction of composite solid electrolytes. Small 2023, 19, 2305326.

[39]

Xu, Z.; Yang, T.; Chu, X.; Su, H.; Wang, Z. X.; Chen, N. J.; Gu, B. N.; Zhang, H. P.; Deng, W. L.; Zhang, H. T. et al. Strong lewis acid-base and weak hydrogen bond synergistically enhancing ionic conductivity of poly(ethylene oxide)@SiO2 electrolytes for a high rate capability Li-metal battery. ACS Appl. Mater. Interfaces 2020, 12, 10341–10349.

[40]

Hu, J.; Wang, W. H.; Zhu, X. J.; Liu, S. B.; Wang, Y. J.; Xu, Y. J.; Zhou, S. K.; He, X. C.; Xue, Z. G. Composite polymer electrolytes reinforced by hollow silica nanotubes for lithium metal batteries. J. Membr. Sci. 2021, 618, 118697

[41]

Bae, J.; Li, Y. T.; Zhao, F.; Zhou, X. Y.; Ding, Y.; Yu, G. H. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 2018, 15, 46–52

[42]
Lu, Z. Y.; Peng, L.; Rong, Y.; Wang, E. L.; Shi, R. H.; Yang, H. X.; Xu, Y. D.; Yang, R. Z.; Jin, C. Enhanced electrochemical properties and optimized Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12498.
DOI
[43]

Zhao, S. Y.; Siqueira, G.; Drdova, S.; Norris, D.; Ubert, C.; Bonnin, A.; Galmarini, S.; Ganobjak, M.; Pan, Z. Y.; Brunner, S. et al. Additive manufacturing of silica aerogels. Nature 2020, 584, 387–392.

[44]

Perea, A.; Dontigny, M.; Zaghib, K. Safety of solid-state Li metal battery: Solid polymer versus liquid electrolyte. J. Power Sources, 2017, 359, 182–185.

[45]

Zheng, J.; Hu, Y. Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 4113–4120.

File
6502_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 November 2023
Revised: 09 January 2024
Accepted: 18 January 2024
Published: 07 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program Intergovernmental International Science and Technology Innovation Cooperation (No. 2022YFE0109400), Leading Edge Technology of Jiangsu Province (Nos. BK20202008 and BK20220009), and Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

We acknowledge the facilities in the Center for Microscopy and Analysis of Nanjing University of Aeronautics and Astronautics.

Return