Journal Home > Volume 17 , Issue 6

S-scheme possesses superior redox capabilities compared with the II-scheme, providing an effective method to solve the innate defects of g-C3N4 (CN). In this study, S-doped g-C3N4/g-C3N4 (SCN-tm/CN) S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance. In-situ Kelvin probe force microscopy (KPFM) confirms the transport of photo-generated electrons from CN to SCN. Density functional theory (DFT) calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective. Femtosecond transient absorption spectrum (fs-TAS) indicates prolonged lifetimes of SCN-tm/CN3 (τ1: 9.7, τ2: 110, and τ3: 1343.5 ps) in comparison to those of CN (τ1: 4.86, τ2: 55.2, and τ3: 927 ps), signifying that the construction of homojunction promotes the separation and transport of electron hole pairs, thus favoring the photocatalytic process. Under visible light irradiation, the optimized SCN-tm/CN3 exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3 μmol·g−1·h−1, which is 20.4 times higher than that of CN (265.7 μmol·g−1·h−1). Moreover, the homojunction also displays an apparent quantum efficiency of 26.8% at 435 nm as well as ultra-long and ultra-stable cycle ability. This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control

Show Author's information Yongpan GuYike Li( )Haoqiang FengYanan HanZhongjun Li( )
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

Abstract

S-scheme possesses superior redox capabilities compared with the II-scheme, providing an effective method to solve the innate defects of g-C3N4 (CN). In this study, S-doped g-C3N4/g-C3N4 (SCN-tm/CN) S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance. In-situ Kelvin probe force microscopy (KPFM) confirms the transport of photo-generated electrons from CN to SCN. Density functional theory (DFT) calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective. Femtosecond transient absorption spectrum (fs-TAS) indicates prolonged lifetimes of SCN-tm/CN3 (τ1: 9.7, τ2: 110, and τ3: 1343.5 ps) in comparison to those of CN (τ1: 4.86, τ2: 55.2, and τ3: 927 ps), signifying that the construction of homojunction promotes the separation and transport of electron hole pairs, thus favoring the photocatalytic process. Under visible light irradiation, the optimized SCN-tm/CN3 exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3 μmol·g−1·h−1, which is 20.4 times higher than that of CN (265.7 μmol·g−1·h−1). Moreover, the homojunction also displays an apparent quantum efficiency of 26.8% at 435 nm as well as ultra-long and ultra-stable cycle ability. This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion.

Keywords: morphology control, homojunction, built-in electric field, interfacial engineering, carrier separation

References(58)

[1]

Wang, Y.; Liu, X. Q.; Liu, J.; Han, B.; Hu, X. Q.; Yang, F.; Xu, Z. W.; Li, Y. C.; Jia, S. R.; Li, Z. et al. Carbon quantum dot implanted graphite carbon nitride nanotubes: Excellent charge separation and enhanced photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 5765–5771.

[2]

Wang, P. L.; Fan, S. Y.; Li, X. Y.; Wang, J.; Liu, Z. Y.; Niu, Z. D.; Tadé, M. O.; Liu, S. M. Single Pd atoms synergistically manipulating charge polarization and active sites for simultaneously photocatalytic hydrogen production and oxidation of benzylamine. Nano Energy 2022, 95, 107045.

[3]

Thangavel, N.; Pandi, K.; Shaheer, A. R. M.; Neppolian, B. Surface-state-induced upward band bending in P doped g-C3N4 for the formation of an isotype heterojunction between bulk g-C3N4 and P doped g-C3N4: Photocatalytic hydrogen production. Catal. Sci. Technol. 2020, 10, 8015–8025.

[4]

Xia, B. Q.; He, B. W.; Zhang, J. J.; Li, L. Q.; Zhang, Y. Z.; Yu, J. G.; Ran, J. R.; Qiao, S. Z. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2201449.

[5]

Li, S. S.; Peng, Y. N.; Hu, C.; Chen, Z. H. Self-assembled synthesis of benzene-ring-grafted g-C3N4 nanotubes for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2020, 279, 119401.

[6]

Rajput, Y.; Kumar, P.; Zhang, T. C.; Kumar, D.; Nemiwal, M. Recent advances in g-C3N4-based photocatalysts for hydrogen evolution reactions. Int. J. Hydrogen Energy 2022, 47, 38533–38555.

[7]

Wang, J. L.; Wang, S. Z. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coord. Chem. Rev. 2022, 453, 214338.

[8]

Jiang, L. B.; Yuan, X. Z.; Zeng, G. M.; Liang, J.; Wu, Z. B.; Wang, H.; Zhang, J.; Xiong, T.; Li, H. A facile band alignment of polymeric carbon nitride isotype heterojunctions for enhanced photocatalytic tetracycline degradation. Environ. Sci. Nano 2018, 5, 2604–2617.

[9]

Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401.

[10]

Zhang, M. J.; Zhang, Y.; Zhu, Y.; Wang, J. J.; Qiao, L.; Zhao, Y.; Tao, Y. N.; Xiao, Y.; Tang, L. Insights into adsorption and high photocatalytic oxidation of ciprofloxacin under visible light by intra-molecular Donor-Acceptor like p-n isotype heterojunction: Performance and mechanism. Chem. Eng. J. 2023, 464, 142533.

[11]

Che, W.; Cheng, W. R.; Yao, T.; Tang, F. M.; Liu, W.; Su, H.; Huang, Y. Y.; Liu, Q. H.; Liu, J. K.; Hu, F. C. et al. Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 2017, 139, 3021–3026.

[12]

Gao, H. L.; Guo, Y.; Yu, Z. W.; Zhao, M. M.; Hou, Y.; Zhu, Z. Q.; Yan, S. C.; Liu, Q. J.; Zou, Z. G. Incorporating p-phenylene as an electron-donating group into graphitic carbon nitride for efficient charge separation. ChemSusChem 2019, 12, 4285–4292.

[13]

Zhang, Y. Z.; Chen, Z. W.; Li, J. L.; Lu, Z. Y.; Wang, X. Self-assembled synthesis of oxygen-doped g-C3N4 nanotubes in enhancement of visible-light photocatalytic hydrogen. J. Energy Chem. 2021, 54, 36–44.

[14]

Wang, N.; Wang, J.; Hu, J. H.; Lu, X. Q.; Sun, J.; Shi, F.; Liu, Z. H.; Lei, Z. B.; Jiang, R. B. Design of palladium-doped g-C3N4 for enhanced photocatalytic activity toward hydrogen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 2866–2873.

[15]
Wang, X. W.; Li, Q. C.; Gan, L.; Ji, X. F.; Chen, F. Y.; Peng, X. K.; Zhang, R. B. 3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction. J. Energy Chem. 2021 , 53, 139–146.
DOI
[16]

Huang, Y. B.; Liu, J.; Zhao, C.; Jia, X. H.; Ma, M. M.; Qian, Y. Y.; Yang, C.; Liu, K.; Tan, F. R.; Wang, Z. J. et al. Facile synthesis of defect-modified thin-layered and porous g-C3N4 with synergetic improvement for photocatalytic H2 production. ACS Appl. Mater. Interfaces 2020, 12, 52603–52614.

[17]

Chen, S. B.; Ng, Y. H.; Liao, J. H.; Gao, Q. Z.; Yang, S. Y.; Peng, F.; Zhong, X. H.; Fang, Y. P.; Zhang, S. S. FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer. J. Energy Chem. 2021, 52, 92–101.

[18]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[19]
Zhou, M. J.; Hou, Z. H.; Zhang, L.; Liu, Y.; Gao, Q. Z.; Chen, X. B. n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Sustainable Energy Fuels 2017 , 1, 317–323.
DOI
[20]

Yang, Y.; Yang, F.; Li, Z.; Zhang, N.; Hao, S. Z-scheme g-C3N4/C/S-g-C3N4 heterostructural nanotube with enhanced porous structure and visible light driven photocatalysis. Microporous Mesoporous Mater. 2021, 314, 110891.

[21]

Deng, Y. C.; Li, L.; Zeng, H.; Tang, R. D.; Zhou, Z. P.; Sun, Y. C.; Feng, C. Y.; Gong, D. X.; Wang, J. J.; Huang, Y. Unveiling the origin of high-efficiency charge transport effect of C3N5/C3N4 homojunction for activating peroxymonosulfate to degrade atrazine under visible light. Chem. Eng. J. 2023, 457, 141261.

[22]

Sudhaik, A.; Sonu; Hasija, V.; Selvasembian, R.; Ahamad, T.; Singh, A.; Khan, A. A. P.; Raizada, P.; Singh, P. Applications of graphitic carbon nitride-based S-scheme heterojunctions for environmental remediation and energy conversion. Nanofabrication. 2023, 8, 1–37.

[23]

Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.

[24]

Wu, X. H.; Chen, G. Q.; Wang, J.; Li, J. M.; Wang, G. H. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution. Acta Phys. Chim. Sin. 2023, 39, 2212016.

[25]

Ruan, X. W.; Huang, C. X.; Cheng, H.; Zhang, Z. Q.; Cui, Y.; Li, Z. Y.; Xie, T. F.; Ba, K. K.; Zhang, H. Y.; Zhang, L. et al. A twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Adv. Mater. 2023, 35, 2209141.

[26]

Zhao, C.; Zheng, M.; Wang, D.; Li, Q.; Jiang, B. J. Enhanced charge separation and transfer of Fe2O3@nitrogen-rich carbon nitride tubes for photocatalytic water splitting. Energy Technol. 2020, 8, 2000108.

[27]

Zhao, Y.; Shi, H. X.; Yang, D. Y.; Fan, J.; Hu, X. Y.; Liu, E. Z. Fabrication of a Sb2MoO6/g-C3N4 Photocatalyst for Enhanced RhB Degradation and H2 Generation. J. Phys. Chem. C. 2020, 124, 13771–13778.

[28]

Kong, C.; Zhang, F. J.; Sun, X. Y.; Kai, C.; Cai, W. Q. In-situ grown rod-shaped Ni(OH)2 between interlayer of g-C3N4 for hydrogen evolution under visible light. Inorg. Chem. Commun. 2020, 122, 108264.

[29]

Zhang, B.; Shi, H. X.; Yan, Y. J.; Liu, C. Q.; Hu, X. Y.; Liu, E. Z.; Fan, J. A novel S-scheme 1D/2D Bi2S3/g-C3N4 heterojunctions with enhanced H2 evolution activity. Colloids Surf. A Physicochem. Eng Asp. 2021, 608, 125598.

[30]

Tong, Z. W.; Yang, D.; Sun, Y. Y.; Nan, Y. H.; Jiang, Z. Y. Tubular g-C3N4 isotype heterojunction: Enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 2016, 12, 4093–4101.

[31]

Sun, S. D.; Li, J.; Song, P.; Cui, J.; Yang, Q.; Zheng, X.; Yang, Z. M.; Liang, S. H. Facile constructing of isotype g-C3N4(bulk)/g-C3N4(nanosheet) heterojunctions through thermal polymerization of single-source glucose-modified melamine: An efficient charge separation system for photocatalytic hydrogen production. Appl. Surf. Sci. 2020, 500, 143985.

[32]

Guan, X. J.; Zong, S. C.; Shen, S. H. Homojunction photocatalysts for water splitting. Nano Res. 2022, 15, 10171–10184.

[33]

Fang, X.; Chen, L.; Cheng, H. R.; Bian, X. Q.; Sun, W. H.; Ding, K. N.; Xia, X. H.; Chen, X.; Zhu, J. F.; Zheng, Y. H. Homojunction and ohmic contact coexisting carbon nitride for efficient photocatalytic hydrogen evolution. Nano Res. 2023, 16, 8782–8792.

[34]

Wu, M.; Zhang, J.; He, B. B.; Wang, H. W.; Wang, R.; Gong, Y. S. In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 241, 159–166.

[35]

Chen, Z. H.; Guo, F.; Sun, H. R.; Shi, Y. X.; Shi, W. L. Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 607, 1391–1401.

[36]

Gu, Y. P.; Sun, L. X.; Feng, H. Q.; Li, Y. K.; Li, Z. J. Novel up-conversion N, S co-doped carbon dots/g-C3N4 photocatalyst for enhanced photocatalytic hydrogen evolution under visible and near-infrared light. Int. J. Hydrogen Energy 2023, 48, 5976–5987.

[37]

Gu, Y. P.; Feng, H. Q.; Zhao, J. D.; Cui, M. L.; Li, Y. K.; Li, Z. J. Rational construction of edge-grafted g-C3N4 via cross-linking aromatic compounds with C-F bonds for efficient photocatalytic H2 evolution. Chem. Eng. J. 2023, 476, 146555.

[38]

Qin, J. C.; Jiao, Y. Y.; Liu, M. Q.; Li, Y. K.; Wang, J. S. Heat treatment to prepare boron doped g-C3N4 nanodots/carbon-rich g-C3N4 nanosheets heterojunction with enhanced photocatalytic performance for water splitting hydrogen evolution. J. Alloys Compd. 2022, 898, 162846.

[39]

Wu, T.; Liu, Z. F.; Shao, B. B.; Liang, Q. H.; He, Q. Y.; Pan, Y.; Zhang, X. S.; Liu, Y.; Sun, J. W.; Gong, S. X. Hydrogen peroxide-impregnated supramolecular precursors synthesize mesoporous-rich ant nest-like filled tubular g-C3N4 for effective photocatalytic removal of pollutants. Chem. Eng. J. 2022, 447, 137332.

[40]

Babu, P.; Mohanty, S.; Naik, B.; Parida, K. Synergistic effects of boron and sulfur Co-doping into graphitic carbon nitride framework for enhanced photocatalytic activity in visible light driven hydrogen generation. ACS Appl. Energy Mater. 2018, 1, 5936–5947.

[41]

Wagner, C. D.; Davis, L. E.; Zeller, M. V.; Taylor, J. A.; Raymond, R. H.; Gale, L. H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 1981, 3, 211–225.

[42]

Yan, J.; Wang, T.; Qiu, S. Y.; Song, Z. L.; Zhu, W. Q.; Liu, X. H.; Lian, J. B.; Sun, C. H.; Li, H. M. Insights into the efficient charge separation over Nb2O5/2D-C3N4 heterostructure for exceptional visible-light driven H2 evolution. J. Energy Chem. 2022, 65, 548–555.

[43]

Chen, X. G.; Chu, B. B.; Gu, Q. H.; Liu, H.; Li, C.; Li, W. Z.; Lu, J.; Wu, D. H. Facile fabrication of protonated g-C3N4/oxygen-doped g-C3N4 homojunction with enhanced visible photocatalytic degradation performance of deoxynivalenol. J. Environ. Chem. Eng. 2021, 9, 106380.

[44]

Chen, P.; Meng, L. H.; Chen, L.; Guo, J. K.; Shen, S.; Au, C. T.; Yin, S. F. Double-shell and flower-like ZnS-C3N4 derived from in situ supramolecular self-assembly for selective aerobic oxidation of amines to imines. ACS Sustainable Chem. Eng. 2019, 7, 14203–14209.

[45]

Sun, X. H.; Sun, L.; Li, G. N.; Tuo, Y.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors thed-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.

[46]

Li, L. J.; Xu, J.; Zhao, S.; Mao, M.; Li, X. H. Construction of p-n type heterojunction for effective photo-generated electron separation and visible light hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 1934–1944.

[47]

Zhao, X.; Liu, M. J.; Wang, Y. C.; Xiong, Y.; Yang, P. Y.; Qin, J. Q.; Xiong, X.; Lei, Y. P. Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 2022, 16, 19959–19979.

[48]

Zhang, J. J.; Yang, G. Y.; He, B. W.; Cheng, B.; Li, Y. J.; Liang, G. J.; Wang, L. X. Electron transfer kinetics in CdS/Pt heterojunction photocatalyst during water splitting. Chin, J. Catal. 2022, 43, 2530–2538.

[49]

Qiu, B. C.; Cai, L. J.; Zhang, N.; Tao, X. M.; Chai, Y. A ternary dumbbell structure with spatially separated catalytic sites for photocatalytic overall water splitting. Adv. Sci. 2020, 7, 1903568.

[50]

Xu, T. T.; Xia, Z. H.; Li, H. G.; Niu, P.; Wang, S. L.; Li, L. Constructing crystalline g-C3N4/g-C3N4- x S x isotype heterostructure for efficient photocatalytic and piezocatalytic performances. Energy Environ. Mater. 2023, 6, e12306.

[51]

Wang, H. Y.; Niu, R. R.; Liu, J. H.; Guo, S.; Yang, Y. P.; Liu, Z. Y.; Li, J. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p—n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 2022, 15, 6987–6998.

[52]

Su, H.; Lou, H. M.; Zhao, Z. P.; Zhou, L.; Pang, Y. X.; Xie, H. J.; Rao, C.; Yang, D. J.; Qiu, X. Q. In-situ Mo doped ZnIn2S4 wrapped MoO3 S-scheme heterojunction via Mo-S bonds to enhance photocatalytic HER. Chem. Eng. J. 2022, 430, 132770.

[53]

Wang, J.; Pan, R. H.; Yan, S. Y.; Wang, R.; Niu, X. Y.; Hao, Q.; Ye, J. L.; Wu, Y. P.; Yang, H. Y. Construction of 1D/2D core-shell structured K6Nb10.8O30@Zn2In2S5 as S-scheme photocatalysts for cocatalyst-free hydrogen production. Chem. Eng. J. 2023, 463, 142489.

[54]

Hu, J. D.; Chen, C.; Hu, T.; Li, J. S.; Lu, H.; Zheng, Y.; Yang, X. G.; Guo, C. X.; Li, C. M. Metal-free heterojunction of black phosphorus/oxygen-enriched porous g-C3N4 as an efficient photocatalyst for Fenton-like cascade water purification. J. Mater. Chem. A 2020, 8, 19484–19492.

[55]

Wang, X. H.; Wang, X. H.; Tian, W. L.; Meng, A. L.; Li, Z. J.; Li, S. X.; Wang, L.; Li, G. C. High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2022, 303, 120933.

[56]

Liang, Q. H.; Liu, X. J.; Wang, J. J.; Liu, Y.; Liu, Z. F.; Tang, L.; Shao, B. B.; Zhang, W.; Gong, S. X.; Cheng, M. et al. In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: Experiments and theories. J. Hazard. Mater. 2021, 401, 123355.

[57]

Shi, Y. X.; Li, L. L.; Xu, Z.; Guo, F.; Shi, W. L. Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production. Chem. Eng. J. 2023, 459, 141549.

[58]

Ren, H. T.; Qi, F.; Labidi, A.; Zhao, J. J.; Wang, H.; Xin, Y.; Luo, J. M.; Wang, C. Y. Chemically bonded carbon quantum dots/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic degradation: Interfacial engineering and mechanism insight. Appl. Catal. B Environ. 2023, 330, 122587.

File
12274_2024_6501_MOESM1_ESM.pdf (886 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 November 2023
Revised: 18 January 2024
Accepted: 19 January 2024
Published: 05 March 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work is supported by the Natural Science Foundation of Henan (No. 232300421361) and the National Natural Science Foundation of China (Nos. 21671176 and 21001096). We thank Beijing China Education Au-light Co., Ltd. for providing the instrument and assistance with SPV measurements.

Return