Journal Home > Volume 17 , Issue 6

The electrocatalytic reduction of CO2 is a promising pathway to generate renewable fuels and chemicals. However, its advancement is impeded by the absence of electrocatalysts with both high selectivity and stability. Here, we present a scalable in-situ thermal evaporation technique for synthesizing series of Bi, In, and Sn nanofilms on carbon felt (CF) substrates with a high-aspect-ratio structure. The resulting main-group metal nanofilms exhibit a homogeneously distributed and highly exposed catalyst surface with ample active sites, thereby promoting mass transport and ad-/desorption of reaction intermediates. Benefiting from the unique fractal morphology, the Bi nanofilms deposited on CF exhibit optimal catalytic activities for CO2 electroreduction among the designed metal nanofilms electrodes, with the highest Faradaic efficiency of 96.9% for formate production at −1.3 V vs. reversible hydrogen electrode (RHE) in H-cell. Under an industrially relevant current density of 221.4 mA·cm−2 in flow cells, the Bi nanofilms retain a high Faradaic efficiency of 81.7% at −1.1 V (vs. RHE) and a good long-term stability for formate production. Furthermore, a techno-economic analysis (TEA) model shows the potential commercial viability of electrocatalytic CO2 conversion into formate using the Bi nanofilms catalyst. Our results offer a green and convenient approach for in-situ fabrication of stable and inexpensive thin-film catalysts with a fractal structure applicable to various industrial settings.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rapid and controllable in-situ self-assembly of main-group metal nanofilms for highly efficient CO2 electroreduction to liquid fuel in flow cells

Show Author's information Miao WangHuaizhu WangYaoda WangJunchuan LiangMengfei ZhuJiarui LiZuoxiu TieZhong Jin( )
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Abstract

The electrocatalytic reduction of CO2 is a promising pathway to generate renewable fuels and chemicals. However, its advancement is impeded by the absence of electrocatalysts with both high selectivity and stability. Here, we present a scalable in-situ thermal evaporation technique for synthesizing series of Bi, In, and Sn nanofilms on carbon felt (CF) substrates with a high-aspect-ratio structure. The resulting main-group metal nanofilms exhibit a homogeneously distributed and highly exposed catalyst surface with ample active sites, thereby promoting mass transport and ad-/desorption of reaction intermediates. Benefiting from the unique fractal morphology, the Bi nanofilms deposited on CF exhibit optimal catalytic activities for CO2 electroreduction among the designed metal nanofilms electrodes, with the highest Faradaic efficiency of 96.9% for formate production at −1.3 V vs. reversible hydrogen electrode (RHE) in H-cell. Under an industrially relevant current density of 221.4 mA·cm−2 in flow cells, the Bi nanofilms retain a high Faradaic efficiency of 81.7% at −1.1 V (vs. RHE) and a good long-term stability for formate production. Furthermore, a techno-economic analysis (TEA) model shows the potential commercial viability of electrocatalytic CO2 conversion into formate using the Bi nanofilms catalyst. Our results offer a green and convenient approach for in-situ fabrication of stable and inexpensive thin-film catalysts with a fractal structure applicable to various industrial settings.

Keywords: CO2 electroreduction, non-noble metal nanofilms, flow cells, efficiency and selectivity, techno-economic analysis

References(33)

[1]

Serna, L.; Fenoll, C. Coping with human CO2 emissions. Nature 2000, 408, 656–657.

[2]

Cox, P. M.; Betts, R. A.; Jones, C. D.; Spall, S. A.; Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187.

[3]

Dogutan, D. K.; Nocera, D. G. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 2019, 52, 3143–3148.

[4]

Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

[5]

Martín, A. J.; Pérez-Ramírez, J. Heading to distributed electrocatalytic conversion of small abundant molecules into fuels, chemicals, and fertilizers. Joule 2019, 3, 2602–2621.

[6]

Zheng, T. T.; Liu, C. X.; Guo, C. X.; Zhang, M. L.; Li, X.; Jiang, Q.; Xue, W. Q.; Li, H. L.; Li, A. W.; Pao, C. W. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 2021, 16, 1386–1393.

[7]

Li, L.; Ozden, A.; Guo, S. Y.; Garcı́a de Arquer, F. P.; Wang, C. H.; Zhang, M. Z.; Zhang, J.; Jiang, H. Y.; Wang, W.; Dong, H. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 2021, 12, 5223.

[8]

Verma, S.; Kim, B.; Jhong, H. R.; Ma, S. C.; Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 2016, 9, 1972–1979

[9]

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it. Joule 2018, 2, 825–832.

[10]
Global CO2 Initiative. Global Roadmap for Implementing CO 2 Utilization; Global CO2 Initiative, 2019.
[11]

Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.

[12]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[13]

Costentin, C.; Robert, M.; Savéant, J. M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 2013, 42, 2423–2436.

[14]

Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

[15]

Lai, W. C.; Ma, Z. S.; Zhang, J. W.; Yuan, Y. L.; Qiao, Y.; Huang, H. W. Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: Fundamental understanding and recent progress. Adv. Funct. Materials 2022, 32, 2111193.

[16]

Yan, S.; Peng, C.; Yang, C.; Chen, Y. S.; Zhang, J. B.; Guan, A. X.; Lv, X. M.; Wang, H. Z.; Wang, Z. Q.; Sham, T. K. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem., Int. Ed. 2021, 60, 25741–25745.

[17]

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[18]

Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.

[19]

Jiang, M. H.; Zhu, M. F.; Wang, H. Z.; Song, X. M.; Liang, J. C.; Lin, D.; Li, C. Q.; Cui, J. X.; Li, F. J.; Zhang, X. L. et al. Rapid and green electric-explosion preparation of spherical indium nanocrystals with abundant metal defects for highly-selective CO2 electroreduction. Nano Lett. 2023, 23, 291–297.

[20]

Yuan, Y. L.; Wang, Q. Y.; Qiao, Y.; Chen, X. L.; Yang, Z. L.; Lai, W. C.; Chen, T. W.; Zhang, G. H.; Duan, H. G.; Liu, M. et al. In situ structural reconstruction to generate the active sites for CO2 electroreduction on bismuth ultrathin nanosheets. Adv. Energy Mater. 2022, 12, 2200970

[21]

Liu, S.; Fan, Y. P.; Wang, Y.; Jin, S.; Hou, M. C.; Zeng, W. J.; Li, K.; Jiang, T. L.; Qin, L.; Yan, Z. H. et al. Surface-oxygen-rich Bi@C nanoparticles for high-efficiency electroreduction of CO2 to formate. Nano Lett. 2022, 22, 9107–9114.

[22]

Yi, L. C.; Chen, J. X.; Shao, P.; Huang, J. H.; Peng, X. X.; Li, J. W.; Wang, G. X.; Zhang, C.; Wen, Z. H. Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 20112–20119.

[23]

Zhang, W. J.; Yang, S. Y.; Jiang, M. H.; Hu, Y.; Hu, C. Q.; Zhang, X. L.; Jin, Z. Nanocapillarity and nanoconfinement effects of pipet-like bismuth@carbon nanotubes for highly efficient electrocatalytic CO2 reduction. Nano Lett. 2021, 21, 2650–2657.

[24]

Liu, J. Z.; Li, Y. H.; Wang, Y. T.; Xiao, C. Q.; Liu, M. M.; Zhou, X. D.; Jiang, H.; Li, C. Z. Isolated ultrasmall Bi nanosheets for efficient CO2-to-formate electroreduction. Nano Res. 2022, 15, 1409–1414.

[25]

Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Zhao, P. Y.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Ma, J.; Liu, J. et al. Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy 2018, 53, 808–816.

[26]

Peng, T.; Zhuang, T. T.; Yan, Y.; Qian, J.; Dick, G. R.; Behaghel de Bueren, J.; Hung, S. F.; Zhang, Y.; Wang, Z. Y.; Wicks, J. et al. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 2021, 143, 17226–17235.

[27]

Wang, M.; Peng, T.; Yang, C. X.; Liang, B. Y.; Chen, H. N.; Kumar, M.; Zhang, Y.; Zhao, W. Electrocatalytic hydrogenation of lignin monomer to methoxy-cyclohexanes with high Faradaic efficiency. Green Chem. 2022, 24, 142–146.

[28]

Gusmão, R.; Sofer, Z.; Pumera, M. Black phosphorus rediscovered: From bulk material to monolayers. Angew. Chem., Int. Ed. 2017, 56, 8052–8072.

[29]

Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

[30]

Ren, B. H.; Wen, G. B.; Gao, R.; Luo, D.; Zhang, Z.; Qiu, W. B.; Ma, Q. Y.; Wang, X.; Cui, Y.; Ricardez-Sandoval, L. et al. Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction. Nat. Commun. 2022, 13, 2486.

[31]

Liu, M. J.; Wang, Y. C.; Yu, T. T.; Zhan, L. S.; Zhao, X.; Lian, C.; Xiong, Y.; Xiong, X.; Lei, Y. P. One-step synthesized Bi5O7I for extremely low-temperature CO2 electroreduction. Sci. Bull. 2023, 68, 1238–1242.

[32]

Liu, H.; Su, Y. Q.; Liu, Z. H.; Chuai, H.; Zhang, S.; Ma, X. B. Tailoring microenvironment for enhanced electrochemical CO2 reduction on ultrathin tin oxide derived nanosheets. Nano Energy 2023, 105, 108031.

[33]

Liu, M. J.; Zhan, L. S.; Wang, Y. C.; Zhao, X.; Wu, J.; Deng, D. N.; Jiang, J. B.; Zheng, X. R.; Lei, Y. P. Achieving integrated capture and reduction of CO2: A promising electrocatalyst. J. Mater. Sci. Technol. 2023, 165, 235–243.

File
12274_2024_6500_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 December 2023
Revised: 18 January 2024
Accepted: 18 January 2024
Published: 29 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The authors are grateful to the supports by the National Key Research and Development Program of China (No. 2017YFA0208200), the National Natural Science Foundation of China (Nos. 22022505 and 21872069), the Fundamental Research Funds for the Central Universities of China (Nos. 020514380266, 020514380272, and 020514380274), the General Project of the Joint Fund of Equipment Pre-research and the Ministry of Education (No. 8091B02052407), the Scientific and Technological Achievements Transformation Special Fund of Jiangsu Province (No. BA2023037), the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (No. BK20220008), the Nanjing International Collaboration Research Program (Nos. 202201007 and 2022SX00000955), and the Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District (No. ZXL2021273).

Return