AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polar solvent induced in-situ self-assembly and oxygen vacancies on Bi2MoO6 for enhanced photocatalytic degradation of tetracycline

Fangyan Liu1,2,§Dongyue Su1,§Weizhen Liu3Baiquan Liu1Chuan Liu1Hong Wang2( )Mengye Wang2( )
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China

§ Fangyan Liu and Dongyue Su contributed equally to this work.

Show Author Information

Graphical Abstract

Ethylene glycol (EG)-mediated strategy promoted in-situ self-assembly of Bi2MoO6 nanosheets with oxygen vacancies that could be manipulated by regulating the EG concentration, which showed a suitable band structure to form reactive oxygen species to degrade tetracycline.

Abstract

It has been proved to be an effective route to efficiently ameliorate photocatalytic performance of catalysts via designing three-dimensional (3D) hierarchical nanostructures and constructing oxygen vacancies (VOs). However, controlling the self-assembly of organization into 3D hierarchical nanostructures while introducing VOs in photocatalysts remains a challenge. Herein, we reported an ethylene glycol (EG) mediated approach to craft 3D hydrangea-structure Bi2MoO6 with VOs for efficient photocatalytic degradation of tetracycline. Through manipulating the EG concentration during the fabrication process, the influence of EG concentration on the Bi2MoO6 structure was systematically investigated. EG could promote the self-assembly of Bi2MoO6 nanosheets to form a 3D hierarchical structure. Compared with 2D nanoplates, 3D hierarchical architecture enhanced the surface area and the amount of active sites of Bi2MoO6. In addition, the reduction effect of EG on metallic oxide enabled the generation of VOs in Bi2MoO6. The VOs adjusted the electronic structure of Bi2MoO6, which not only enhanced the light harvesting, but also facilitated the simultaneous utilization of photo-induced electrons and holes to form reactive oxygen species (·O2− and ·OH) for the efficient tetracycline decomposition. 3D Bi2MoO6 hydrangea with VOs achieved a 79.4% removal efficiency of tetracycline after 75 min. This work provides a simple yet robust EG-mediated strategy, which not only promotes the self-assembly of nano-catalysts into 3D hierarchical architectures, but also crafts tunable VOs for highly efficient photocatalysis.

Electronic Supplementary Material

Download File(s)
12274_2024_6498_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

[2]

Xing, Z. P.; Zhang, J. Q.; Cui, J. Y.; Yin, J. W.; Zhao, T. Y.; Kuang, J. Y.; Xiu, Z.; Wan, N.; Zhou, W. Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal. B: Environ. 2018, 225, 452–467.

[3]

Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C. J.; Cai, Z. H.; Guest, J. R.; Ren, Y. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 2019, 4, 957–968.

[4]

Hu, Y.; Li, X. B.; Wang, W. W.; Deng, F.; Han, L.; Gao, X. M.; Feng, Z. J.; Chen, Z.; Huang, J. T.; Zeng, F. Y. et al. Bi and S co-doping g-C3N4 to enhance internal electric field for robust photocatalytic degradation and H2 production. Chin. J. Struct. Chem. 2022, 41, 2206069–2206078.

[5]

Shen, H. D.; Zhan, X. Y.; Hong, S.; Xu, L.; Yang, C. M.; Robertson, A. W.; Hao, L. D.; Fu, F.; Sun, Z. Y. Ultrafine MoO x clusters anchored on g-C3N4 with nitrogen/oxygen dual defects for synergistic efficient O2 activation and tetracycline photodegradation. Nano Res. 2023, 16, 10713–10723.

[6]

Meng, Q. Q.; Lv, C. D.; Sun, J. X.; Hong, W. Z.; Xing, W. N.; Qiang, L. S.; Chen, G.; Jin, X. L. High-efficiency Fe-mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction. Appl. Catal. B: Environ. 2019, 256, 117781.

[7]

Xiong, J.; Song, P.; Di, J.; Li, H. M.; Liu, Z. Freestanding ultrathin bismuth-based materials for diversified photocatalytic applications. J. Mater. Chem. A 2019, 7, 25203–25226.

[8]

Xu, M.; Yang, J. K.; Sun, C. Y.; Liu, L.; Cui, Y.; Liang, B. Performance enhancement strategies of Bi-based photocatalysts: A review on recent progress. Chem. Eng. J. 2020, 389, 124402.

[9]

Qin, K. N.; Zhao, Q. L.; Yu, H.; Xia, X. H.; Li, J. J.; He, S. F.; Wei, L. L.; An, T. C. A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms. Environ. Res. 2021, 199, 111360.

[10]

Di, J.; Zhao, X. X.; Lian, C.; Ji, M. X.; Xia, J. X.; Xiong, J.; Zhou, W.; Cao, X. Z.; She, Y. B.; Liu, H. L. et al. Atomically-thin Bi2MoO6 nanosheets with vacancy pairs for improved photocatalytic CO2 reduction. Nano Energy 2019, 61, 54–59.

[11]

Arif, M.; Zhang, M.; Qiu, B.; Yao, J. C.; Bu, Q. X.; Ali, A.; Muhmood, T.; Hussian, I.; Liu, X. H.; Zhou, B. J. et al. Synergistic effect of ultrathin thickness and surface oxygen vacancies in high-efficiency Ti-mediated Bi2MoO6 for immense photocatalytic nitrofurantoin degradation and Cr(VI) reduction. Appl. Surf. Sci. 2021, 543, 148816.

[12]

Kongmark, C.; Coulter, R.; Cristol, S.; Rubbens, A.; Pirovano, C.; Löfberg, A.; Sankar, G.; Van Beek, W.; Bordes-Richard, E.; Vannier, R. N. A comprehensive scenario of the crystal growth of γ-Bi2MoO6 catalyst during hydrothermal synthesis. Cryst. Growth Des. 2012, 12, 5994–6003.

[13]

Zheng, Y.; Zhou, T. F.; Zhao, X. D.; Pang, W. K.; Gao, H.; Li, S. A.; Zhou, Z.; Liu, H. K.; Guo, Z. P. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 2017, 29, 1700396.

[14]

Li, H. D.; Li, W. J.; Gu, S. N.; Wang, F. Z.; Liu, X. T.; Ren, C. J. Forming oxygen vacancies inside in lutetium-doped Bi2MoO6 nanosheets for enhanced visible-light photocatalytic activity. Mol. Catal. 2017, 433, 301–312.

[15]

Meng, Q. Q.; Zhou, Y. S.; Chen, G.; Hu, Y. D.; Lv, C. D.; Qiang, L. S.; Xing, W. N. Integrating both homojunction and heterojunction in QDs self-decorated Bi2MoO6/BCN composites to achieve an efficient photocatalyst for Cr(VI) reduction. Chem. Eng. J. 2018, 334, 334–343.

[16]

Zhang, L. W.; Xu, T. G.; Zhao, X.; Zhu, Y. F. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B: Environ. 2010, 98, 138–146.

[17]

Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.

[18]

Dai, Z.; Qin, F.; Zhao, H. P.; Ding, J.; Liu, Y. L.; Chen, R. Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis. ACS Catal. 2016, 6, 3180–3192.

[19]

Khatun, S.; Shimizu, K.; Singha, S.; Saha, R.; Watanabe, S.; Roy, P. Defect enriched hierarchical iron promoted Bi2MoO6 hollow spheres as efficient electrocatalyst for water oxidation. Chem. Eng. J. 2021, 426, 131884.

[20]

Song, H.; Ou, X. W.; Han, B.; Deng, H. Y.; Zhang, W. C.; Tian, C.; Cai, C. F.; Lu, A. H.; Lin, Z.; Chai, L. Y. An overlooked natural hydrogen evolution pathway: Ni2+ boosting H2O reduction by Fe(OH)2 oxidation during low-temperature serpentinization. Angew. Chem., Int. Ed. 2021, 60, 24054–24058.

[21]

Wu, X. L.; Ng, Y. H.; Wen, X. M.; Chung, H. Y.; Wong, R. J.; Du, Y.; Dou, S. X.; Amal, R.; Scott, J. Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chem. Eng. J. 2018, 353, 636–644.

[22]

Liu, Y.; Kong, X. D.; Guo, X.; Li, Q. Y.; Ke, J. W.; Wang, R. Y.; Li, Q. X.; Geng, Z. G.; Zeng, J. Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies. ACS Catal. 2020, 10, 1077–1085.

[23]

Yan, X. D.; Zhao, H. M.; Li, T. F.; Zhang, W.; Liu, Q. L.; Yuan, Y.; Huang, L. J.; Yao, L. L.; Yao, J. H.; Su, H. L. et al. In situ synthesis of BiOCl nanosheets on three-dimensional hierarchical structures for efficient photocatalysis under visible light. Nanoscale 2019, 11, 10203–10208

[24]

Zhan, W. W.; Yuan, Y. S.; Sun, L. M.; Yuan, Y. Y.; Han, X. G.; Zhao, Y. L. Hierarchical NiO@N-doped carbon microspheres with ultrathin nanosheet subunits as excellent photocatalysts for hydrogen evolution. Small 2019, 15, 1901024.

[25]

Mu, F. H.; Cai, Q.; Hu, H.; Wang, J.; Wang, Y.; Zhou, S. J.; Kong, Y. Construction of 3D hierarchical microarchitectures of Z-scheme UiO-66-(COOH)2/ZnIn2S4 hybrid decorated with non-noble MoS2 cocatalyst: A highly efficient photocatalyst for hydrogen evolution and Cr(VI) reduction. Chem. Eng. J. 2020, 384, 123352.

[26]

Fan, H. T.; Wu, Z.; Liu, K. C.; Liu, W. S. Fabrication of 3D CuS@ZnIn2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 433, 134474.

[27]

Yao, S.; Liu, J. W.; Liu, F. Y.; Wang, B.; Ding, Y.; Li, L.; Liu, C.; Huang, F.; Fang, J. Y.; Lin, Z. et al. Robust route to photocatalytic nitrogen fixation mediated by capitalizing on defect-tailored InVO4 nanosheets. Environ. Sci. Nano 2022, 9, 1996–2005.

[28]

Liu, B. Y.; Wang, X.; Zhang, Y. J.; Xu, L. C.; Wang, T. S.; Xiao, X.; Wang, S. C.; Wang, L. Z.; Huang, W. A BiVO4 photoanode with a VO x layer bearing oxygen vacancies offers improved charge transfer and oxygen evolution kinetics in photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2023, 62, e202217346.

[29]

Wu, Z.; Wang, M. Y.; Bai, Y.; Song, H.; Lv, J. X.; Mo, X. F.; Li, X. Q.; Lin, Z. Upcycling of nickel iron slags to hierarchical self-assembled flower-like photocatalysts for highly efficient degradation of high-concentration tetracycline. Chem. Eng. J. 2023, 464, 142532.

[30]

Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636.

[31]
Nakanishi, T. Supramolecular Soft Matter: Applications in Materials and Organic Electronics; John Wiley & Sons: Hoboken, 2011.
[32]

Wang, B.; Liu, J. W.; Yao, S.; Liu, F. Y.; Li, Y. K.; He, J. Q.; Lin, Z.; Huang, F.; Liu, C.; Wang, M. Y. Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. J. Mater. Chem. A 2021, 9, 17143–17172.

[33]

Wang, P. L.; Li, X. Y.; Fan, S. Y.; Yin, Z. F.; Wang, L.; Tadé, M. O.; Liu, S. M. Piezotronic effect and oxygen vacancies boosted photocatalysis C–N coupling of benzylamine. Nano Energy 2021, 83, 105831.

[34]

Huang, Q. L.; Zhao, P. Z.; Lv, L.; Zhang, W. M.; Pan, B. C. Redox-induced in situ growth of MnO2 with rich oxygen vacancies over monolithic copper foam for boosting toluene combustion. Environ. Sci. Technol. 2023, 57, 9096–9104.

[35]

Zheng, Y. F.; Fu, K. X.; Yu, Z. H.; Su, Y.; Han, R.; Liu, Q. L. Oxygen vacancies in a catalyst for VOCs oxidation: Synthesis, characterization, and catalytic effects. J. Mater. Chem. A 2022, 10, 14171–14186.

[36]

Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 2006, 18, 2426–2431.

[37]

Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. 2005, 117, 4465–4469.

[38]

Zhu, L. P.; Zhang, W. D.; Xiao, H. M.; Yang, Y.; Fu, S. Y. Facile synthesis of metallic Co hierarchical nanostructured microspheres by a simple solvothermal process. J. Phys. Chem. C 2008, 112, 10073–10078.

[39]

Yang, G.; Zhu, Y. A.; Liang, Y. J.; Yang, J.; Wang, K.; Zeng, Z. K.; Xu, R.; Xie, X. J. Crystal defect-mediated {010} facets of Bi2MoO6 nanosheets for removal of TC: Enhanced mechanism and degradation pathway. Appl. Surf. Sci. 2021, 539, 148038.

[40]

Yang, Z. X.; Shen, M.; Dai, K.; Zhang, X. H.; Chen, H. Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2018, 430, 505–514.

[41]

Hua, Z. L.; Wang, X. M.; Xiao, P.; Shi, J. L. Solvent effect on microstructure of yttria-stabilized zirconia (YSZ) particles in solvothermal synthesis. J. Eur. Cera. Soc. 2006, 26, 2257–2264.

[42]

Shang, M.; Wang, W. Z.; Xu, H. L. New Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG. Cryst. Growth Des. 2009, 9, 991–996.

[43]

Yu, D. B.; Sun, X. Q.; Zou, J. W.; Wang, Z. R.; Wang, F.; Tang, K. Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres. J. Phys. Chem. B 2006, 110, 21667–21671.

[44]

Xu, X.; Ding, X.; Yang, X. L.; Wang, P.; Li, S.; Lu, Z. X.; Chen, H. Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study. J. Hazard. Mater. 2019, 364, 691–699.

[45]

Yang, L. X.; Guo, J. W.; Zhang, J.; Zhang, S. Q.; Dai, W. L.; Xiao, X.; Luo, X. B.; Luo, S. L. Utter degradation of toluene with inhibiting the generation of benzene by self-supporting Bi2MoO6 nanoflakes featuring OV-enriched interface. Chem. Eng. J. 2022, 427, 131550.

[46]

Maczka, M.; Paraguassu, W.; Souza Filho, A. G.; Freire, P. T. C.; Mendes Filho, J.; Hanuza, J. Phonon-instability-driven phase transitions in ferroelectric Bi2WO6:Eu3+: High-pressure Raman and photoluminescence studies. Phys. Rev. B 2008, 77, 094137.

[47]

Li, L. J.; Sun, F. J. Application of infrared spectrometry to the study of metal oxide nanomaterials. Mater. Rev. 2006, 20, 92–94.

[48]

Dai, W. L.; Long, J. F.; Yang, L. X.; Zhang, S. Q.; Xu, Y.; Luo, X. B.; Zou, J. P.; Luo, S. L. Oxygen migration triggering molybdenum exposure in oxygen vacancy-rich ultra-thin Bi2MoO6 nanoflakes: Dual binding sites governing selective CO2 reduction into liquid hydrocarbons. J. Energy Chem. 2021, 61, 281–289.

[49]

Yang, X. L.; Wang, S. Y.; Yang, N.; Zhou, W.; Wang, P.; Jiang, K.; Li, S.; Song, H.; Ding, X.; Chen, H. et al. Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Appl. Catal. B: Environ. 2019, 259, 118088.

[50]

Hu, J. S.; Li, J.; Cui, J. F.; An, W. J.; Liu, L.; Liang, Y. H.; Cui, W. Q. Surface oxygen vacancies enriched FeOOH/Bi2MoO6 photocatalysis-Fenton synergy degradation of organic pollutants. J. Hazard. Mater. 2020, 384, 121399.

[51]

Zhang, J. H.; Hu, Y.; Qin, J. X.; Yang, Z. X.; Fu, M. L. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chem. Eng. J. 2020, 385, 123814.

[52]

Gao, S.; Gu, B. C.; Jiao, X. C.; Sun, Y. F.; Zu, X. L.; Yang, F.; Zhu, W. G.; Wang, C. M.; Feng, Z. M.; Ye, B. J. et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 2017, 139, 3438–3445.

[53]

Guan, Z. L.; Li, X. M.; Wu, Y.; Chen, Z.; Huang, X. D.; Wang, D. B.; Yang, Q.; Liu, J. L.; Tian, S. H.; Chen, X. Y. et al. AgBr nanoparticles decorated 2D/2D GO/Bi2WO6 photocatalyst with enhanced photocatalytic performance for the removal of tetracycline hydrochloride. Chem. Eng. J. 2021, 410, 128283.

[54]

Yang, Y.; Zeng, G. M.; Huang, D. L.; Zhang, C.; He, D. H.; Zhou, C. Y.; Wang, W. J.; Xiong, W. P.; Song, B.; Yi, H. et al. In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics. Small, 2020, 16, 2001634

Nano Research
Pages 4951-4960
Cite this article:
Liu F, Su D, Liu W, et al. Polar solvent induced in-situ self-assembly and oxygen vacancies on Bi2MoO6 for enhanced photocatalytic degradation of tetracycline. Nano Research, 2024, 17(6): 4951-4960. https://doi.org/10.1007/s12274-024-6498-4
Topics:

424

Views

4

Crossref

10

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 28 November 2023
Revised: 05 January 2024
Accepted: 18 January 2024
Published: 02 March 2024
© Tsinghua University Press 2024
Return