Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Top-down strategy has been widely applied for synthesis of metal single atom catalysts (SACs) via converting metal nanoparticles or bulk metals into atomically dispersed species. Here, we report a simple electrochemical atomic migration strategy for top-down synthesis of SACs via a facile cathodic corrosion process without involving high temperature or harsh atmosphere. Atoms of metal nanoparticles on cathode are firstly disbanded under high negative voltage, and emitted into the electrolyte in the form of atomic metal anions in Zintl phase. The escaped atomically dispersed metal species are then oxidized by water molecules and captured by the defects on the pre-added nitrogen doped carbon carriers in the electrolyte. This cathodic corrosion strategy is confirmed to be suitable for scalable synthesis of kinds of metal SACs (e.g., Pt, Pd, and Ir) on doped carbon materials. Typically, the as-prepared nitrogen doped carbon powder supported Pt SACs exhibit superior catalytic activity toward hydrogen evolution reaction (HER) with a low overpotential of 0.024 V at 10 mA·cm−2 and a low Tafel slope of 29.7 mV·dec−1 as well as a long-term durability.
Wang, Y.; Huang, X.; Wei, Z. D. Recent developments in the use of single-atom catalysts for water splitting. Chin. J. Catal. 2021, 42, 1269–1286.
Jia, C.; Dastafkan, K.; Zhao, C. Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction. Curr. Opin. Electrochem. 2022, 31, 100854.
Tomboc, G. M.; Kim, T.; Jung, S.; Yoon, H. J.; Lee, K. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance in hydrogen/oxygen evolution reaction. Small 2022, 18, 2105680.
Li, J. Y.; Gao, L.; Pan, F. Y.; Gong, C.; Sun, L. M.; Gao, H.; Zhang, J. Q.; Zhao, Y. F.; Wang, G. X.; Liu, H. Engineering strategies for suppressing the shuttle effect in lithium-sulfur batteries. Nano-Micro Lett. 2024, 16, 12.
Zhao, Y. F.; Zhang, J. Q.; Guo, X.; Cao, X. J.; Wang, S. J.; Liu, H.; Wang, G. X. Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chem. Soc. Rev. 2023, 52, 3215–3264.
Guo, W. X.; Wang, Z. Y.; Wang, X. Q.; Wu, Y. E. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, 2004287.
Zhao, Y. F.; Jiang, W. J.; Zhang, J. Q.; Lovell, E. C.; Amal, R.; Han, Z. J.; Lu, X. Y. Anchoring sites engineering in single-atom catalysts for highly efficient electrochemical energy conversion reactions. Adv. Mater. 2021, 33, 2102801.
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.
Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zbořil, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.
Dai, Q. Z.; Wang, L.; Wang, K. X.; Sang, X. H.; Li, Z. J.; Yang, B.; Chen, J. M.; Lei, L. C.; Dai, L. M.; Hou, Y. Accelerated water dissociation kinetics by electron-enriched cobalt sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2109556.
Zhao, Y. F.; Shen, Z. Y.; Huo, J. J.; Cao, X. J.; Ou, P. F.; Qu, J. P.; Nie, X. M.; Zhang, J. Q.; Wu, M. H.; Wang, G. X. et al. Epoxy-rich Fe single atom sites boost oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202308349.
Bae, G.; Han, S.; Oh, H. S.; Choi, C. H. Operando stability of single-atom electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202219227.
Singh, B.; Gawande, M. B.; Kute, A. D.; Varma, R. S.; Fornasiero, P.; McNeice, P.; Jagadeesh, R. V.; Beller, M.; Zboril, R. Single-atom (iron-based) catalysts: Synthesis and applications. Chem. Rev. 2021, 121, 13620–13697.
Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.
Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.
Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.
Matthews, T.; Mashola, T. A.; Adegoke, K. A.; Mugadza, K.; Fakude, C. T.; Adegoke, O. R.; Adekunle, A. S.; Ndungu, P.; Maxakato, N. W. Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coord. Chem. Rev. 2022, 467, 214600.
Zhan, Q. N.; Shuai, T. Y.; Xu, H. M.; Huang, C. J.; Zhang, Z. J.; Li, G. R. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chin. J. Catal. 2023, 47, 32–66.
Zhao, L.; Wang, S. Q.; Liang, S. J.; An, Q.; Fu, J. J.; Hu, J. S. Coordination anchoring synthesis of high-density single-metal-atom sites for electrocatalysis. Coord. Chem. Rev. 2022, 466, 214603.
Fang, J. J.; Chen, Q. Q.; Li, Z.; Mao, J. J.; Li, Y. D. The synthesis of single-atom catalysts for heterogeneous catalysis. Chem. Commun. 2023, 59, 2854–2868.
Kim, S.; Park, J.; Hwang, J.; Lee, J. Effects of functional supports on efficiency and stability of atomically dispersed noble-metal electrocatalysts. EnergyChem 2021, 3, 100054.
Yang, Q.; Liu, H. X.; Yuan, P.; Jia, Y.; Zhuang, L. Z.; Zhang, H. W.; Yan, X. C.; Liu, G. H.; Zhao, Y. F.; Liu, J. Z. et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 2022, 144, 2171–2178.
Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.
Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.
Xing, L. W.; Jin, Y. J.; Weng, Y. X.; Feng, R.; Ji, Y. J.; Gao, H. Y.; Chen, X.; Zhang, X. W.; Jia, D. D.; Wang, G. Top–down synthetic strategies toward single atoms on the rise. Matter 2022, 5, 788–807.
Liu, J.; Cao, C. Y.; Liu, X. Z.; Zheng, L. R.; Yu, X. H.; Zhang, Q. H.; Gu, L.; Qi, R. L.; Song, W. G. Direct observation of metal oxide nanoparticles being transformed into metal single atoms with oxygen-coordinated structure and high-loadings. Angew. Chem., Int. Ed. 2021, 60, 15248–15253.
Hersbach, T. J. P.; Koper, M. T. M. Cathodic corrosion: 21st century insights into a 19th century phenomenon. Curr. Opin. Electrochem. 2021, 26, 100653.
Wirtanen, T.; Prenzel, T.; Tessonnier, J. P.; Waldvogel, S. R. Cathodic corrosion of metal electrodes—How to prevent it in electroorganic synthesis. Chem. Rev. 2021, 121, 10241–10270.
Evazzade, I.; Zagalskaya, A.; Alexandrov, V. Revealing elusive intermediates of platinum cathodic corrosion through DFT simulations. J. Phys. Chem. Lett. 2022, 13, 3047–3052.
Yang, Y.; Shao, Y. T.; Lu, X. Y.; Yang, Y.; Ko, H. Y.; DiStasio, R. A. Jr.; DiSalvo, F. J.; Muller, D. A.; Abruña, H. D . Elucidating cathodic corrosion mechanisms with operando electrochemical transmission electron microscopy. J. Am. Chem. Soc. 2022, 144, 15698–15708.
Liu, Z.; Höfft, O.; Gödde, A. S.; Endres, F. In situ electrochemical XPS monitoring of the formation of anionic gold species by cathodic corrosion of a gold electrode in an ionic liquid. J. Phys. Chem. C 2021, 125, 26793–26800.
Elnagar, M. M.; Kibler, L. A.; Jacob, T. Structural evolution of Au electrodes during cathodic corrosion: Initial stages of octahedral-nanocrystal growth. J. Electrochem. Soc. 2022, 169, 102509.
Li, G. P.; Liu, H.; Yang, H.; Chen, X. Y.; Ji, K. M.; Yang, D. C.; Zhang, S.; Ma, X. B. Tuning product distributions of CO2 electroreduction over copper foil through cathodic corrosion. Chem. Eng. Sci. 2022, 263, 118142.
Elnagar, M. M.; Kibler, L. A.; Jacob, T. Metal deposition and electrocatalysis for elucidating structural changes of gold electrodes during cathodic corrosion. Green Chem. 2023, 25, 6238–6252.
Feng, J. C.; Chen, D.; Sediq, A. S.; Romeijn, S.; Tichelaar, F. D.; Jiskoot, W.; Yang, J.; Koper, M. T. M. Cathodic corrosion of a bulk wire to nonaggregated functional nanocrystals and nanoalloys. ACS Appl. Mater. Interfaces 2018, 10, 9532–9540.
Elnagar, M. M.; Hermann, J. M.; Jacob, T.; Kibler, L. A. Tailoring the electrode surface structure by cathodic corrosion in alkali metal hydroxide solution: Nanostructuring and faceting of Au. Curr. Opin. Electrochem. 2021, 27, 100696.
Chen, X. T.; Koper, M. T. M. In situ EC-AFM study of the initial stages of cathodic corrosion of Pt (111) and polycrystalline Pt in acid solution. J. Phys. Chem. Lett. 2023, 14, 4997–5003.
Li, R.; Xu, J. S.; Zhao, Q. K.; Ren, W. S.; Zeng, R. G.; Pan, Q. F.; Yan, X. Y.; Ba, J. W.; Tang, T.; Luo, W. H. Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms. Nano Res. 2022, 15, 1838–1844.
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
Huo, J. J.; Cao, X. J.; Tian, Y. P.; Li, L.; Qu, J. P.; Xie, Y. H.; Nie, X. M.; Zhao, Y. F.; Zhang, J. Q.; Liu, H. Atomically dispersed Mn atoms coordinated with N and O within an N-doped porous carbon framework for boosted oxygen reduction catalysis. Nanoscale 2023, 15, 5448–5457.
Xu, J. S.; Li, R.; Zeng, R. G.; Yan, X. Y.; Zhao, Q. K.; Ba, J. W.; Luo, W. H.; Meng, D. Q. Platinum single atoms supported on nanoarray-structured nitrogen-doped graphite foil with enhanced catalytic performance for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 38106–38112.
Zhong, R.; Lu, X. S.; Zheng, F.; Zhang, J. L.; Hong, R. Y. Effect of carrier gas on nitrogen-doped graphene in AC rotating arc plasma. J. Mater. Sci. 2023, 58, 8742–8756.
Wang, K. Y.; Chen, Y.; Liu, Y. B.; Zhang, H.; Shen, Y. X.; Pu, Z. Y.; Qiu, H. L.; Li, Y. M. Plasma boosted N, P, O co-doped carbon microspheres for high performance Zn ion hybrid supercapacitors. J. Alloys Compd. 2022, 901, 163588.
Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207
Yanson, A. I.; Antonov, P. V.; Yanson, Y. I.; Koper, M. T. M. Controlling the size of platinum nanoparticles prepared by cathodic corrosion. Electrochim. Acta 2013, 110, 796–800.
Yanson, A. I.; Rodriguez, P.; Garcia-Araez, N.; Mom, R. V.; Tichelaar, F. D.; Koper, M. T. M. Cathodic corrosion: A quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 6346–6350.
Yang, Y. C.; Qiao, B. H.; Wu, Z. P.; Ji, X. B. Cathodic corrosion: An electrochemical approach to capture Zintl compounds for powder materials. J. Mater. Chem. A 2015, 3, 5328–5336.
Vanrenterghem, B.; Bele, M.; Zepeda, F. R.; Šala, M.; Hodnik, N.; Breugelmans, T. Cutting the Gordian Knot of electrodeposition via controlled cathodic corrosion enabling the production of supported metal nanoparticles below 5 nm. Appl. Catal. B: Environ. 2018, 226, 396–402.
Hersbach, T. J. P.; McCrum, I. T.; Anastasiadou, D.; Wever, R.; Calle-Vallejo, F.; Koper, M. T. M. Alkali metal cation effects in structuring Pt, Rh, and Au surfaces through cathodic corrosion. ACS Appl. Mater. Interfaces 2018, 10, 39363–39379.
Wang, N.; Mei, R. G.; Lin, X. D.; Chen, L. Q.; Yang, T.; Liu, Q. X.; Chen, Z. W. Cascade anchoring strategy for fabricating high-loading Pt single atoms as bifunctional catalysts for electrocatalytic hydrogen evolution and oxygen reduction reactions. ACS Appl. Mater. Interfaces 2023, 15, 29195–29203.
Zeng, Z. Q.; Küspert, S.; Balaghi, S. E.; Hussein, H. E. M.; Ortlieb, N.; Knäbbeler-Buß, M.; Hügenell, P.; Pollitt, S.; Hug, N.; Melke, J. et al. Ultrahigh mass activity Pt entities consisting of Pt single atoms, clusters, and nanoparticles for improved hydrogen evolution reaction. Small 2023, 19, 2205885.
Xu, J. S.; Li, R.; Yan, X. Y.; Zhao, Q. K.; Zeng, R. G.; Ba, J. W.; Pan, Q. F.; Xiang, X.; Meng, D. Q. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Res. 2022, 15, 3952–3958.
Yang, W. W.; Li, M. Y.; Zhang, B. K.; Liu, Y. Z.; Zi, J. Z.; Xiao, H.; Liu, X. Y.; Lin, J. K.; Zhang, H. Y.; Chen, J. et al. Interfacial microenvironment modulation boosts efficient hydrogen evolution reaction in neutral and alkaline. Adv. Funct. Mater. 2023, 33, 2304852.
Lin, E. J.; Huang, Y. B.; Chen, P. K.; Chang, J. W.; Chang, S. Y.; Ou, W. T.; Lin, C. C.; Wu, Y. H.; Chen, J. L.; Pao, C. W. et al. Graphitic carbon nitride embedded with single-atom Pt for photo-enhanced electrocatalytic hydrogen evolution reaction. Appl. Surf. Sci. 2023, 615, 156372.
Zhong, B. X.; Wen, C.; Peng, Y.; Zhang, X.; Qiu, Z. H.; Xu, H. J. Hydrogen evolution reaction activity obtained using platinum single atoms on TiO2 nanosheets modified with graphene. J. Mater. Sci. 2022, 57, 16448–16459.
Sun, Z. Y.; Yang, Y. Q.; Fang, C. H.; Yao, Y. C.; Qin, F. J.; Gu, H. F.; Liu, Q. Q.; Xu, W. J.; Tang, H.; Jiang, Z. et al. Atomic-level Pt electrocatalyst synthesized via iced photochemical method for hydrogen evolution reaction with high efficiency. Small 2022, 18, 2203422.
Yu, P. W.; Elmas, S.; Roman, T.; Pan, X.; Yin, Y. T.; Gibson, C. T.; Andersson, G. G.; Andersson, M. R. Highly active platinum single-atom catalyst grafted onto 3D carbon cloth support for the electrocatalytic hydrogen evolution reaction. Appl. Surf. Sci. 2022, 595, 153480.
Li, J.; Zhou, Y. N.; Tang, W. J.; Zheng, J.; Gao, X. P.; Wang, N.; Chen, X.; Wei, M.; Xiao, X.; Chu, W. Cold-plasma technique enabled supported Pt single atoms with tunable coordination for hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 285, 119861.