Journal Home > Volume 17 , Issue 6

Perovskite oxides (POs) are emerging as a class of highly efficient catalysts for reducing oxygen to H2O. Although a rich variety of POs-based catalysts have been developed by tuning the complex composition, a highly efficient PO catalyst that is able to alter the reaction pathway from a 4e process to a 2e process for H2O2 production has rarely been achieved. We modified the structure and composition of a Ca- and Nb-based PO material by realizing a uniform two-dimensional (2D) morphology and varied Ta doping, resulting in the 2D Ca2Nb3−xTaxO10 (x = 0, 0.5, 1, and 1.5) monolayer catalysts. The obtained catalysts exhibit a dominant 2e pathway and show exceptional H2O2 production efficiency. The typical Ca2Nb2.5Ta0.5O10 nanoflakes showed an onset potential of 0.735 V vs. reversible hydrogen electrode (RHE), a remarkably high selectivity over 95% across a wide range of 0.3–0.7 V, an impressively high Faradaic efficiency of 94%, and a notable H2O2 productivity of 1571 mmol·gcat−1·h−1. These findings highlight the great potential of 2D perovskite oxide nanoflakes as advanced electrocatalysts for 2e oxygen reduction reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

2D Ca/Nb-based perovskite oxide with Ta doping as highly efficient H2O2 synthesis catalyst

Show Author's information Xingchen Yang1,2,§Yang Gao1,2,§Xiaohui Xu1,2Wenqiang Xu1,2Denghui Wang1,2Bin Luo3Dong Liu4Tao Liang5,6( )Bin Wang1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD 4072, Australia
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China

§ Xingchen Yang and Yang Gao contributed equally to this work.

Abstract

Perovskite oxides (POs) are emerging as a class of highly efficient catalysts for reducing oxygen to H2O. Although a rich variety of POs-based catalysts have been developed by tuning the complex composition, a highly efficient PO catalyst that is able to alter the reaction pathway from a 4e process to a 2e process for H2O2 production has rarely been achieved. We modified the structure and composition of a Ca- and Nb-based PO material by realizing a uniform two-dimensional (2D) morphology and varied Ta doping, resulting in the 2D Ca2Nb3−xTaxO10 (x = 0, 0.5, 1, and 1.5) monolayer catalysts. The obtained catalysts exhibit a dominant 2e pathway and show exceptional H2O2 production efficiency. The typical Ca2Nb2.5Ta0.5O10 nanoflakes showed an onset potential of 0.735 V vs. reversible hydrogen electrode (RHE), a remarkably high selectivity over 95% across a wide range of 0.3–0.7 V, an impressively high Faradaic efficiency of 94%, and a notable H2O2 productivity of 1571 mmol·gcat−1·h−1. These findings highlight the great potential of 2D perovskite oxide nanoflakes as advanced electrocatalysts for 2e oxygen reduction reaction.

Keywords: catalyst, perovskite oxide, H2O2, two-electron oxygen reduction reaction, Ca2Nb3–xTaxO10 nanoflakes

References(57)

[1]

Brillas, E.; Sirés, I.; Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.

[2]

Hage, R.; Lienke, A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angew. Chem., Int. Ed. 2005, 45, 206–222.

[3]

Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

[4]

Xu, X. H.; Gao, Y.; Yang, Q.; Liang, T.; Luo, B.; Kong, D. B.; Li, X. L.; Zhi, L. J.; Wang, B. Regulating the activity of intrinsic sites in covalent organic frameworks by introducing electro-withdrawing groups towards highly selective H2O2 electrosynthesis. Nano Today 2023, 49, 101792.

[5]

Yi, Y. H.; Wang, L.; Li, G.; Guo, H. C. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: Noble-metal catalytic method, fuel-cell method and plasma method. Catal. Sci. Technol. 2016, 6, 1593–1610.

[6]

Xu, S. S.; Gao, Y.; Liang, T.; Zhang, L. P.; Wang, B. N,O-coupling towards the selectively electrochemical production of H2O2. Chin. Chem. Lett. 2022, 33, 5152–5157.

[7]

Dong, K.; Liang, J.; Wang, Y. Y.; Zhang, L. C.; Xu, Z. Q.; Sun, S. J.; Luo, Y. S.; Li, T. S.; Liu, Q.; Li, N. et al. Conductive two-dimensional magnesium metal-organic frameworks for high-efficiency O2 electroreduction to H2O2. ACS Catal. 2022, 12, 6092–6099.

[8]

Wang, M. J.; Dong, X.; Meng, Z. D.; Hu, Z. W.; Lin, Y. G.; Peng, C. K.; Wang, H. S.; Pao, C. W.; Ding, S. Y.; Li, Y. Y. et al. An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2021, 60, 11190–11195.

[9]

Zhang, C. Q.; Yuan, L.; Liu, C.; Li, Z. M.; Zou, Y. Y.; Zhang, X. C.; Zhang, Y.; Zhang, Z. Q.; Wei, G. F.; Yu, C. Z. Crystal engineering enables cobalt-based metal-organic frameworks as high-performance electrocatalysts for H2O2 production. J. Am. Chem. Soc. 2023, 145, 7791–7799.

[10]

Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

[11]

Zhang, B. W.; Zheng, T.; Wang, Y. X.; Du, Y.; Chu, S. Q.; Xia, Z. H.; Amal, R.; Dou, S. X.; Dai, L. M. Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Commun. Chem. 2022, 5, 43.

[12]

Gong, H. S.; Wei, Z. X.; Gong, Z. C.; Liu, J. J.; Ye, G. L.; Yan, M. M.; Dong, J. C.; Allen, C.; Liu, J. B.; Huang, K. et al. Low-coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 2022, 32, 2106886.

[13]

Sheng, H. Y.; Hermes, E. D.; Yang, X. H.; Ying, D. W.; Janes, A. N.; Li, W. J.; Schmidt, J. R.; Jin, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442.

[14]

Gao, R. J.; Pan, L.; Li, Z. W.; Shi, C. X.; Yao, Y. D.; Zhang, X. W.; Zou, J. J. Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production. Adv. Funct. Mater. 2020, 30, 1910539.

[15]

Liu, C.; Li, H.; Chen, J. S.; Yu, Z. X.; Ru, Q.; Li, S. Z.; Henkelman, G.; Wei, L.; Chen, Y. 3D transition-metal-mediated columbite nanocatalysts for decentralized electrosynthesis of hydrogen peroxide. Small 2021, 17, 2007249

[16]

Tian, Y. H.; Li, M.; Wu, Z. Z.; Sun, Q.; Yuan, D.; Johannessen, B.; Xu, L.; Wang, Y.; Dou, Y. H.; Zhao, H. J. et al. Edge-hosted atomic Co-N4 Sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202213296.

[17]

Lin, L. X.; Huang, L.; Wu, C.; Gao, Y.; Miao, N. H.; Wu, C.; Marshall, A. T.; Zhao, Y.; Wang, J. Z.; Chen, J. et al. Lattice distortion and H-passivation in pure carbon electrocatalysts for efficient and stable two-electron oxygen reduction to H2O2. Angew. Chem., Int. Ed. 2023, 62, e202315182.

[18]

Peng, W.; Liu, J. X.; Liu, X. Q.; Wang, L. Q.; Yin, L. C.; Tan, H. T.; Hou, F.; Liang, J. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production. Nat. Commun. 2023, 14, 4430.

[19]

Yan, M. M.; Wei, Z. X.; Gong, Z. C.; Johannessen, B.; Ye, G. L.; He, G. C.; Liu, J. J.; Zhao, S. L.; Cui, C. Y.; Fei, H. L. Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis. Nat. Commun. 2023, 14, 368.

[20]

Zhang, P. P.; Wang, F. X.; Yu, M. H.; Zhuang, X. D.; Feng, X. L. Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems. Chem. Soc. Rev. 2018, 47, 7426–7451.

[21]

Wei, Y. C.; Weng, Z.; Guo, L. C.; An, L.; Yin, J.; Sun, S. Y.; Da, P. F.; Wang, R.; Xi, P. X.; Yan, C. H. Activation strategies of perovskite-type structure for applications in oxygen-related electrocatalysts. Small Methods 2021, 5, 2100012.

[22]

Zhang, M. F.; Jeerh, G.; Zou, P. M.; Lan, R.; Wang, M. T.; Wang, H. T.; Tao, S. W. Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Mater. Today 2021, 49, 351–377.

[23]

Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

[24]

Wang, K.; Han, C.; Shao, Z. P.; Qiu, J. S.; Wang, S. B.; Liu, S. M. Perovskite oxide catalysts for advanced oxidation reactions. Adv. Funct. Mater. 2021, 31, 2102089.

[25]

Zhao, X. M.; Liu, T. R.; Loo, Y. L. Advancing 2D perovskites for efficient and stable solar cells: Challenges and opportunities. Adv. Mater. 2022, 34, 2105849.

[26]

Even, J.; Pedesseau, L.; Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 2014, 118, 11566–11572.

[27]

Ji, Q. Q.; Bi, L.; Zhang, J. T.; Cao, H. J.; Zhao, X. S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428.

[28]

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

[29]

Beall, C. E.; Fabbri, E.; Schmidt, T. J. Perovskite oxide based electrodes for the oxygen reduction and evolution reactions: The underlying mechanism. ACS Catal. 2021, 11, 3094–3114.

[30]

Wen, S. D.; Liu, B. W.; Li, W.; Liang, T.; Li, X. L.; Yi, D.; Luo, B.; Zhi, L. J.; Liu, D.; Wang, B. A battery process activated highly efficient carbon catalyst toward oxygen reduction by stabilizing lithium-oxygen bonding. Adv. Funct. Mater. 2022, 32, 2203960.

[31]

Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.

[32]

Xu, F. F.; Ebina, Y.; Bando, Y.; Sasaki, T. Structural characterization of (TBA, H)Ca2Nb3O10 nanosheets formed by delamination of a precursor-layered perovskite. J. Phys. Chem. B 2003, 107, 9638–9645.

[33]

Ma, R. Z.; Sasaki, T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 2010, 22, 5082–5104.

[34]

Li, H. H.; Liu, B. W.; Yang, X. C.; Gao, Y.; Luo, X.; Guan, X. Y.; Zhang, Z.; Yu, Z. L.; Wang, B. Liquid phase exfoliation of indium selenide: Achieving the optimum exfoliating parameters and unraveling the mechanism. Prog. Nat. Sci.: Mater. Int. 2022, 32, 700–704.

[35]

Maeda, K.; Eguchi, M.; Oshima, T. Perovskite oxide nanosheets with tunable band-edge potentials and high photocatalytic hydrogen-evolution activity. Angew. Chem., Int. Ed. 2014, 53, 13164–13168.

[36]

Ida, S.; Takashiba, A.; Koga, S.; Hagiwara, H.; Ishihara, T. Potential gradient and photocatalytic activity of an ultrathin p-n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 2014, 136, 1872–1878.

[37]

Osada, M.; Sasaki, T. Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 2012, 24, 210–228.

[38]

Zhang, Y.; Li, S. Y.; Li, Z. L.; Liu, H.; Liu, X. Y.; Chen, J. X.; Fang, X. S. High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett. 2021, 21, 382–388.

[39]

Liu, X. Y.; Li, S. Y.; Li, Z. Q.; Zhang, Y.; Yang, W.; Li, Z. L.; Liu, H.; Shtansky, D. V.; Fang, X. S. Boosted responsivity and tunable spectral response in B-site substituted 2D Ca2Nb3− x Ta x O10 perovskite photodetectors. Adv. Funct. Mater. 2021, 31, 2101480.

[40]

Zhang, G.; Liu, G.; Wang, L. Z.; Irvine, J. T. S. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 2016, 45, 5951–5984.

[41]

Sun, Y.; Liu, Z. Y.; Zhang, W.; Chu, X. F.; Cong, Y. G.; Huang, K. K.; Feng, S. H. Unfolding B–O–B bonds for an enhanced ORR performance in ABO3-type perovskites. Small 2019, 15, 1803513.

[42]

Zhao, Q.; Zhu, D.; Zhou, X.; Li, S. H.; Sun, X. Y.; Cui, J.; Fan, Z.; Guo, M. J.; Zhao, J.; Teng, B. T. et al. Conductive one-dimensional coordination polymers with tunable selectivity for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 52960–52966.

[43]

Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427.

[44]

Li, Z. Q.; Chen, Y.; Zhu, P. F.; Ji, N. J.; Duan, X. L.; Jiang, H. D. Electronic structure and properties of RbTiOPO4: Ta crystals. RSC Adv. 2017, 7, 53111–53116.

[45]

Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol. C: Photochem. Rev. 2011, 12, 237–268.

[46]

Xu, P. T.; Milstein, T. J.; Mallouk, T. E. Flat-band potentials of molecularly thin metal oxide nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11539–11547.

[47]

Okamoto, Y.; Ida, S.; Hyodo, J.; Hagiwara, H.; Ishihara, T. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading. J. Am. Chem. Soc. 2011, 133, 18034–18037.

[48]

Li, M. R.; Zhao, M. W.; Li, F.; Zhou, W.; Peterson, V. K.; Xu, X. Y.; Shao, Z. P.; Gentle, I.; Zhu, Z. H. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nat. Commun. 2017, 8, 13990.

[49]

Zhao, B. T.; Zhang, L.; Zhen, D. X.; Yoo, S.; Ding, Y.; Chen, D. C.; Chen, Y.; Zhang, Q. B.; Doyle, B.; Xiong, X. H. et al. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat. Commun. 2017, 8, 14586.

[50]

Qian, J. N.; Liu, W.; Jiang, Y. T.; Mu, Y. B.; Cai, Y. Y.; Shi, L.; Zeng, L. Enhanced catalytic performance in two-electron oxygen reduction reaction via ZnSnO3 perovskite. ACS Sustain. Chem. Eng. 2022, 10, 14351–14360.

[51]

Han, L.; Sun, Y. Y.; Li, S.; Cheng, C.; Halbig, C. E.; Feicht, P.; Hübner, J. L.; Strasser, P.; Eigler, S. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 2019, 9, 1283–1288.

[52]

Jiang, H.; Wang, Y. A.; Hu, J.; Shai, X.; Zhang, C. X.; Le, T.; Zhang, L. B.; Shao, M. H. Phase regulation of WO3 for highly selective oxygen reduction to hydrogen peroxide. Chem. Eng. J. 2023, 452, 139449.

[53]

Wang, N.; Zhao, X. H.; Zhang, R.; Yu, S.; Levell, Z. H.; Wang, C. Y.; Ma, S. B.; Zou, P. C.; Han, L. L.; Qin, J. Y. et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst. ACS Catal. 2022, 12, 4156–4164.

[54]

Chakthranont, P.; Nitrathorn, S.; Thongratkaew, S.; Khemthong, P.; Nakajima, H.; Supruangnet, R.; Butburee, T.; Sano, N.; Faungnawakij, K. Rational design of metal-free doped carbon nanohorn catalysts for efficient electrosynthesis of H2O2 from O2 reduction. ACS Appl. Energy Mater. 2021, 4, 12436–12447.

[55]

Fan, M. M.; Wang, Z. M.; Sun, K.; Wang, A.; Zhao, Y. Y.; Yuan, Q. X.; Wang, R. B.; Raj, J.; Wu, J. J.; Jiang, J. C. et al. N-B-OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Adv. Mater. 2023, 35, 2209086.

[56]

Zhang, C. Q.; Lu, R. H.; Liu, C.; Lu, J. Y.; Zou, Y. Y.; Yuan, L.; Wang, J.; Wang, G. Z.; Zhao, Y.; Yu, C. Z. Trimetallic sulfide hollow superstructures with engineered d-band center for oxygen reduction to hydrogen peroxide in alkaline solution. Adv. Sci. 2022, 9, 2104768.

[57]

Zhang, F. F.; Zhu, Y. L.; Tang, C.; Chen, Y.; Qian, B. B.; Hu, Z. W.; Chang, Y. C.; Pao, C. W.; Lin, Q.; Kazemi, S. A. et al. High-efficiency electrosynthesis of hydrogen peroxide from oxygen reduction enabled by a tungsten single atom catalyst with unique terdentate N1O2 coordination. Adv. Funct. Mater. 2022, 32, 2110224.

File
12274_2024_6496_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 September 2023
Revised: 12 January 2024
Accepted: 18 January 2024
Published: 07 March 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

We thank the financial support from the National Key Research and development Program of China (Nos. 2022YFF0712200 and 2021YFA1202802), the Young Elite Scientists Sponsorship Program by BAST (No. BYESS2023410), the visiting scholars fund support from State Key Lab of Silicon Materials, Zhejiang University (No. SKL2022-04), and the CAS Pioneer Hundred Talents Program.

Return