Journal Home > Online First

Fresh and clean water is highly demanded throughout the world. To effectively address the need, nanomaterials enabled nanotechnology has been explored as a means of more efficient, reliable, and environmentally friendly approach towards water treatment practices. One concern in adopting nanomaterials is how to retrieve them from water body to avoid secondary contamination. In this work, the earth abundant and sustainable wood, e.g., basswood, was selected and carbonized into porous carbon as host skeleton, and metal-organic frameworks (MOFs), e.g., MOF-199 with extremely high surface area, were grown throughout all channels in the porous basswood carbon. Targeting the traditional organic pollutant, methyl orange (MO), the combination of MOFs and basswood carbon (MOFs@carbon) demonstrates a remarkable adsorption capacity, which is 243% and 454% higher than basswood carbon and MOF-199, respectively. Such an outstanding adsorption performance originates from that the positively charged carbon pulls MO molecules close to carbon surface, leading to a high MO molecule concentration, and then the concentration gradient drives the MO molecules to be stored inside MOFs, functioning like pockets. These findings highlight the potential application of coupled MOFs and biomass carbon in addressing water remediation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Coupling metal-organic frameworks and wood-based carbon for water remediation

Show Author's information Akhter Zia1,§Manish Neupane2,§Aidan McGlone1,§Rui He3Ruikun Xin4Yifeng Liu5Qiangu Yan6Jinwu Wang6Ling Li7Zhiyong Cai6Pei Dong3( )Yingchao Yang1,2( )
Department of Mechanical Engineering, University of Maine, Orono, ME 04469, USA
Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
Department of Mechanical Engineering, George Mason University, Fairfax, VA 22030, USA
Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
Forest Products Laboratory, USDA, Madison, WI 53726, USA
School of Forestry Resources, University of Maine, Orono, ME 04469, USA

§ Akhter Zia, Manish Neupane, and Aidan McGlone contributed equally to this work.

Abstract

Fresh and clean water is highly demanded throughout the world. To effectively address the need, nanomaterials enabled nanotechnology has been explored as a means of more efficient, reliable, and environmentally friendly approach towards water treatment practices. One concern in adopting nanomaterials is how to retrieve them from water body to avoid secondary contamination. In this work, the earth abundant and sustainable wood, e.g., basswood, was selected and carbonized into porous carbon as host skeleton, and metal-organic frameworks (MOFs), e.g., MOF-199 with extremely high surface area, were grown throughout all channels in the porous basswood carbon. Targeting the traditional organic pollutant, methyl orange (MO), the combination of MOFs and basswood carbon (MOFs@carbon) demonstrates a remarkable adsorption capacity, which is 243% and 454% higher than basswood carbon and MOF-199, respectively. Such an outstanding adsorption performance originates from that the positively charged carbon pulls MO molecules close to carbon surface, leading to a high MO molecule concentration, and then the concentration gradient drives the MO molecules to be stored inside MOFs, functioning like pockets. These findings highlight the potential application of coupled MOFs and biomass carbon in addressing water remediation.

Keywords: methyl orange, basswood carbon, MOFs@carbon, metal-organic framework (MOF)-199

References(52)

[1]
Pooja, D., Kumar, P., Singh, P., Patil, S. Sensors in Water Pollutants Monitoring: Role of Material; Springer: Singapore, 2020.
DOI
[2]

Nie, C. Y.; Wang, J. L.; Cai, B. H.; Lai, B.; Wang, S. B.; Ao, Z. M. Multifunctional roles of MoS2 in persulfate-based advanced oxidation processes for eliminating aqueous organic pollutants: A review. Appl. Catal. B: Environ. 2023, 340, 123173.

[3]

Stefanakis, A. I.; Zouzias, D.; Marsellos, A. Groundwater pollution: Human and natural sources and risks. Environ. Sci. Eng. 2017, 4, 82–102.

[4]

Hoang, A. T.; Pham, V. V.; Nguyen, D. N. A report of oil spill recovery technologies. Int. J. Appl. Eng. Res. 2018, 13, 4915–4928.

[5]

Sonune, A.; Ghate, R. Developments in wastewater treatment methods. Desalination 2004, 167, 55–63.

[6]

Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155.

[7]

Li, X.; Wang, B. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Res. 2023, 16, 10326–10341.

[8]

Vikrant, K.; Kumar, V.; Vellingiri, K.; Kim, K. H. Nanomaterials for the abatement of cadmium(II) ions from water/wastewater. Nano Res. 2019, 12, 1489–1507.

[9]

Zhao, Y.; Song, X.; Huang, M.; Jiang, H.; Toghan, A. Crown ether interlayer-modulated polyamide membrane with nanoscale structures for efficient desalination. Nano Res. 2023, 16, 6153–6159.

[10]

Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water–water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

[11]

Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

[12]

Liu, S., Sun, L. X., Xu, F., Zhang, J., Jiao, C. L., Li, F., Li, Z. B., Wang, S., Wang, Z. Q., Jiang, X. et al. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ. Sci. 2013, 6, 818–823.

[13]

Millward, A. R.; Yaghi, O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999.

[14]

Liu, X. L.; Demir, N. K.; Wu, Z. T.; Li, K. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 2015, 137, 6999–7002.

[15]

Wang, Z. M.; Xu, X. T.; Kim, J.; Malgras, V.; Mo, R.; Li, C. L.; Lin, Y. Z.; Tan, H. B.; Tang, J.; Pan, L. K. et al. Nanoarchitectured metal-organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization. Mater. Horiz. 2019, 6, 1433–1437.

[16]

Tchinsa, A.; Hossain, M. F.; Wang, T.; Zhou, Y. B. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review. Chemosphere 2021, 284, 131393.

[17]

Haque, E.; Lee, J. E.; Jang, I. T.; Hwang, Y. K.; Chang, J. S.; Jegal, J.; Jhung, S. H. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater. 2010, 181, 535–542.

[18]

Hasan, Z.; Choi, E. J.; Jhung, S. H. Adsorption of naproxen and clofibric acid over a metal-organic framework MIL-101 functionalized with acidic and basic groups. Chem. Eng. J. 2013, 219, 537–544.

[19]

Shi, R. H.; Zhang, Z. R.; Fan, H. L.; Zhen, T.; Shangguan, J.; Mi, J. Cu-based metal-organic framework/activated carbon composites for sulfur compounds removal. Appl. Surf. Sci. 2017, 394, 394–402.

[20]

Isaeva, V. I.; Chernyshev, V. V.; Fomkin, A. A.; Shkolin, A. V.; Veselovsky, V. V.; Kapustin, G. I.; Sokolova, N. A.; Kustov, L. M. Preparation of novel hybrid catalyst with an hierarchical micro-/mesoporous structure by direct growth of the HKUST-1 nanoparticles inside mesoporous silica matrix (MMS). Microporous Mesoporous Mater. 2020, 300, 110136.

[21]

Jafari, E. A.; Moradi, M.; Borhani, S.; Bigdeli, H.; Hajati, S. Fabrication of hybrid supercapacitor based on rod-like HKUST-1@polyaniline as cathode and reduced graphene oxide as anode. Phys. E Low Dimens. Syst. Nanostruct. 2018, 99, 16–23.

[22]

Lin, S.; Song, Z. L.; Che, G. B.; Ren, A.; Li, P.; Liu, C. B.; Zhang, J. S. Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution. Microporous Mesoporous Mater. 2014, 193, 27–34.

[23]
Brush, W. D. Utilization of Basswood; Govt. Print. Off: Washington, 1922.
DOI
[24]
Meier, E. WOOD! Identifying and Using Hundreds of Woods Worldwide; The Wood Database, 2015.
[25]

Nazir, M. A.; Najam, T.; Zarin, K.; Shahzad, K.; Javed, M. S.; Jamshaid, M.; Bashir, M. A.; Shah, S. S. A.; Rehman, A. U. Enhanced adsorption removal of methyl orange from water by porous bimetallic Ni/Co MOF composite: A systematic study of adsorption kinetics. Int. J. Environ. Anal. Chem. 2023, 103, 4841–4856.

[26]

Lv, S. W.; Liu, J. M.; Ma, H.; Wang, Z. H.; Li, C. Y.; Zhao, N.; Wang, S. Simultaneous adsorption of methyl orange and methylene blue from aqueous solution using amino functionalized Zr-based MOFs. Microporous Mesoporous Mater. 2019, 282, 179–187.

[27]

Rathinam, K.; Singh, S. P.; Arnusch, C. J.; Kasher, R. An environmentally-friendly chitosan-lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions. Carbohydr. Polym. 2018, 199, 506–515.

[28]

Yu, Y.; Qiao, N.; Wang, D. J.; Zhu, Q. Z.; Fu, F.; Cao, R. Q.; Wang, R.; Liu, W.; Xu, B. Fluffy honeycomb-like activated carbon from popcorn with high surface area and well-developed porosity for ultra-high efficiency adsorption of organic dyes. Bioresour. Technol. 2019, 285, 121340.

[29]

Islam, M. T.; Saenz-Arana, R.; Hernandez, C.; Guinto, T.; Ahsan, M. A.; Bragg, D. T.; Wang, H. Y.; Alvarado-Tenorio, B.; Noveron, J. C. Conversion of waste tire rubber into a high-capacity adsorbent for the removal of methylene blue, methyl orange, and tetracycline from water. J. Environ. Chem. Eng. 2018, 6, 3070–3082.

[30]

Ji, W. J.; Hao, R. Q.; Pei, W. W.; Feng, L.; Zhai, Q. G. Design of two isoreticular Cd-biphenyltetracarboxylate frameworks for dye adsorption, separation and photocatalytic degradation. Dalton Trans. 2018, 47, 700–707.

[31]

Embaby, M. S.; Elwany, S. D.; Setyaningsih, W.; Saber, M. R. The adsorptive properties of UiO-66 towards organic dyes: A record adsorption capacity for the anionic dye alizarin red S. Chin. J. Chem. Eng. 2018, 26, 731–739.

[32]

Bahrudin, N. N.; Nawi, M. A.; Jawad, A. H.; Sabar, S. Adsorption characteristics and mechanistic study of immobilized chitosan-montmorillonite composite for methyl orange removal. J. Polym. Environ. 2020, 28, 1901–1913.

[33]

Jiang, Y. Z.; Liu, B. C.; Xu, J. K.; Pan, K. L.; Hou, H. J.; Hu, J. P.; Yang, J. K. Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism. Carbohydr. Polym. 2018, 182, 106–114.

[34]

Vellingiri, K.; Szulejko, J. E.; Kumar, P.; Kwon, E. E.; Kim, K. H.; Deep, A.; Boukhvalov, D. W.; Brown, R. J. C. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci. Rep. 2016, 6, 27813.

[35]

Fan, S. J.; Guo, H.; Wang, Y. M.; Liu, J. H. Selective adsorption of the cationic dye rhodamine-6G from aqueous solution by phosphotungstic acid@MOF-199 composites. J. Indian Chem. Soc. 2022, 99, 100579.

[36]

Mahmoodi, N. M.; Abdi, J. Nanoporous metal-organic framework (MOF-199): Synthesis, characterization and photocatalytic degradation of basic blue 41. Microchem. J. 2019, 144, 436–442.

[37]

Wang, C. P.; Yin, H.; Tian, P. J.; Sun, X. J.; Pan, X. Y.; Chen, K. F.; Chen, W. J.; Wu, Q. H.; Luo, S. Y. Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor. Environ. Res. 2020, 184, 109323.

[38]

Ma, Q.; Zhang, Q. Q.; Maimaiti, T.; Lan, S. K.; Liu, X. W.; Wang, Y. Q.; Li, Q.; Luo, H. Z.; Yu, B. W.; Yang, S. T. Carbonization reduces the toxicity of metal-organic framework MOF-199 to white-rot fungus Phanerochaete chrysosporium. J. Environ. Chem. Eng. 2021, 9, 106705.

[39]
Fleming, I.; Williams, D. H. Spectroscopic Methods in Organic Chemistry; McGraw-Hill: London, 1966.
[40]

Du, L.; Yang, J. Y.; Xu, X. R. Highly enhanced adsorption of dimethyl disulfide from model oil on MOF-199/attapulgite composites. Ind. Eng. Chem. Res 2019, 58, 2009–2016.

[41]

Cyril, N.; George, J. B.; Joseph, L.; Sylas, V. P. Catalytic degradation of methyl orange and selective sensing of mercury ion in aqueous solutions using green synthesized silver nanoparticles from the seeds of Derris trifoliata. J. Clust. Sci. 2019, 30, 459–468.

[42]

Kalyani, D. C.; Telke, A. A.; Govindwar, S. P.; Jadhav, J. P. Biodegradation and detoxification of reactive textile dye by isolated Pseudomonas sp. SUK1. Water Environ. Res. 2009, 81, 298–307.

[43]

Ayed, L.; Khelifi, E.; Jannet, H. B.; Miladi, H.; Cheref, A.; Achour, S.; Bakhrouf, A. Response surface methodology for decolorization of azo dye methyl orange by bacterial consortium: Produced enzymes and metabolites characterization. Chem. Eng. J. 2010, 165, 200–208.

[44]

Sun, Y. Y.; Yue, Q. Y.; Gao, B. Y.; Li, Q.; Huang, L. H.; Yao, F. J.; Xu, X. Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption. J. Colloid Interface Sci. 2012, 368, 521–527.

[45]

Newcombe, G.; Drikas, M. Adsorption of NOM onto activated carbon: Electrostatic and non-electrostatic effects. Carbon 1997, 35, 1239–1250.

[46]

Chowdhury, Z. Z.; Zain, S. M.; Khan, R. A.; Islam, M. S. Preparation and characterizations of activated carbon from kenaf fiber for equilibrium adsorption studies of copper from wastewater. Korean J. Chem. Eng. 2012, 29, 1187–1195.

[47]

Dirksen, A.; Zuidema, E.; Williams, R. M.; De Cola, L.; Kauffmann, C.; Vögtle, F.; Roque, A.; Pina, F. Photoactivity and pH sensitivity of methyl orange functionalized poly(propyleneamine) dendrimers. Macromolecules 2002, 35, 2743–2747.

[48]

Song, X. L.; Liu, H. Y.; Cheng, L.; Qu, Y. X. Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption. Desalination 2010, 255, 78–83.

[49]

Moreno-Castilla, C.; Bautista-Toledo, I.; Ferro-Garcıa, M. A.; Rivera-Utrilla, J. Influence of support surface properties on activity of bacteria immobilised on activated carbons for water denitrification. Carbon 2003, 41, 1743–1749.

[50]

Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetenskapsakad. Handl. 1898, 24, 1–39.

[51]

Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465.

[52]

Simonin, J. P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263.

File
6490_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 September 2023
Revised: 05 January 2024
Accepted: 15 January 2024
Published: 07 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

J. W. W., Z. Y. C., and Y. C. Y. acknowledge the financial support from the USDA Forest Service (No. 20-JV-11111124-035). Y. C. Y. and P. D. acknowledge the financial support from the Department of the Interior, Bureau of Reclamation (No. R19AC00116). Y. C. Y. thanks Dr. Y. Q. Meng in Idaho National Laboratory for helping on BET measurement.

Return