Journal Home > Volume 17 , Issue 6

Precise and sensitive bioanalysis has been the major and urgent pursuit in pathologic diagnosis, food safety, environment monitoring, and drug evaluation. Photoelectrochemical (PEC) bioanalysis, as one of the most promising detection technologies, has rapidly expanded within the field of analysis. However, most of reported PEC analysis approaches still suffer from weak external anti-interference ability, high background, and the risk of false positive or negative errors due to their inherent single-signal readout. To overcome these shortcomings, new PEC-coupled dual-modal analysis approaches have been developed, where a dual-response signal can be derived through two completely different mechanisms and independent signal transduction pathways. This review introduces the basic principles of PEC biosensing and enumerates and classifies the substrate or probe selections, constructions, and applications of PEC-coupled dual-modal biosensors. Furthermore, the challenges and developmental prospects of PEC-coupled dual-mode sensing technologies are evaluated and discussed. We hope that this review will provide valuable insights into the latest advancements and practical applications of dual-mode PEC bioanalysis, which will be of great interest to those seeking to stay informed in this field.


menu
Abstract
Full text
Outline
About this article

Recent advances in photoelectrochemistry-coupled dual-modal biosensors: From constructions to biosensing applications

Show Author's information Yuxiang Dong1Weisa Wang1Changqing Ye1( )Yanlin Song2( )
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Precise and sensitive bioanalysis has been the major and urgent pursuit in pathologic diagnosis, food safety, environment monitoring, and drug evaluation. Photoelectrochemical (PEC) bioanalysis, as one of the most promising detection technologies, has rapidly expanded within the field of analysis. However, most of reported PEC analysis approaches still suffer from weak external anti-interference ability, high background, and the risk of false positive or negative errors due to their inherent single-signal readout. To overcome these shortcomings, new PEC-coupled dual-modal analysis approaches have been developed, where a dual-response signal can be derived through two completely different mechanisms and independent signal transduction pathways. This review introduces the basic principles of PEC biosensing and enumerates and classifies the substrate or probe selections, constructions, and applications of PEC-coupled dual-modal biosensors. Furthermore, the challenges and developmental prospects of PEC-coupled dual-mode sensing technologies are evaluated and discussed. We hope that this review will provide valuable insights into the latest advancements and practical applications of dual-mode PEC bioanalysis, which will be of great interest to those seeking to stay informed in this field.

Keywords: fluorescence, electrochemiluminescence, electrochemistry, colorimetry, photoelectrochemistry biosensor, dual-mode detection

References(103)

[1]

Ribeiro, J. A.; Sales, M. G. F.; Pereira, C. M. Electrochemistry combined-surface plasmon resonance biosensors: A review. TrAC Trends Anal. Chem. 2022, 157, 116766.

[2]

Yang, T.; Luo, Z. W.; Tian, Y. H.; Qian, C.; Duan, Y. X. Design strategies of AuNPs-based nucleic acid colorimetric biosensors. TrAC Trends Anal. Chem. 2020, 124, 115795.

[3]

Liu, Z. Y.; Qi, W. J.; Xu, G. B. Recent advances in electrochemiluminescence. Chem. Soc. Rev. 2015, 44, 3117–3142.

[4]

Lee, M. H.; Kim, J. S.; Sessler, J. L. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191.

[5]

Xu, Y. T.; Yu, S. Y.; Zhu, Y. C.; Fan, G. C.; Han, D. M.; Qu, P.; Zhao, W. W. Cathodic photoelectrochemical bioanalysis. TrAC Trends Anal. Chem. 2019, 114, 81–88.

[6]

Cao, J. T.; Dong, Y. X.; Ma, Y.; Wang, B.; Ma, S. H.; Liu, Y. M. A ternary CdS@Au-g-C3N4 heterojunction-based photoelectrochemical immunosensor for prostate specific antigen detection using graphene oxide-CuS as tags for signal amplification. Anal. Chim. Acta 2020, 1106, 183–190.

[7]

Dong, Y. X.; Cao, J. T.; Liu, Y. M.; Ma, S. H. A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated polydopamine nanospheres. Biosens. Bioelectron. 2017, 91, 246–252.

[8]

Dong, Y. X.; Cao, J. T.; Wang, B.; Ma, S. H.; Liu, Y. M. Exciton–plasmon interactions between CdS@g-C3N4 heterojunction and Au@Ag nanoparticles coupled with DNAase-triggered signal amplification: Toward highly sensitive photoelectrochemical bioanalysis of microRNA. ACS Sustain. Chem. Eng. 2017, 5, 10840–10848.

[9]

Dong, Y. X.; Cao, J. T.; Wang, B.; Ma, S. H.; Liu, Y. M. Spatial-resolved photoelectrochemical biosensing array based on a CdS@g-C3N4 heterojunction: A universal immunosensing platform for accurate detection. ACS Appl. Mater. Interfaces 2018, 10, 3723–3731.

[10]

Zhao, W. W.; Xu, J. J.; Chen, H. Y. Photoelectrochemical DNA biosensors. Chem. Rev. 2014, 114, 7421–7441.

[11]

Zhao, W. W.; Xu, J. J.; Chen, H. Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015, 44, 729–741.

[12]

Deng, H. M.; Huang, L. J.; Chai, Y. Q.; Yuan, R.; Yuan, Y. L. Ultrasensitive photoelectrochemical detection of multiple metal ions based on wavelength-resolved dual-signal output triggered by click reaction. Anal. Chem. 2019, 91, 2861–2868.

[13]

Dong, Q. Y.; Ding, Q.; Yuan, R.; Yuan, Y. L. Metal porphyrin complex combined with polymerization and isomerization cyclic amplification for a sensitive photoelectrochemical assay. Anal. Chem. 2023, 95, 5126–5132.

[14]

Huang, L. J.; Deng, H. M.; Zhong, X.; Zhu, M. H.; Chai, Y. Q.; Yuan, R.; Yuan, Y. L. Wavelength distinguishable signal quenching and enhancing toward photoactive material 3,4,9,10-perylenetetracarboxylic dianhydride for simultaneous assay of dual metal ions. Biosens. Bioelectron. 2019, 145, 111702.

[15]

Wang, Y. H.; Yang, M. C.; Shi, H. H.; Ge, S. G.; Wang, X.; Yu, J. H. Photoelectrochemical detection of exosomal miRNAs by combining target-programmed controllable signal quenching engineering. Anal. Chem. 2022, 94, 3082–3090.

[16]

Meng, S. Y.; Liu, D.; Li, Y. Y.; Dong, N.; Liu, S. D.; Liu, C.; Li, X.; You, T. Y. Photoelectrochemical and visual dual-mode sensor for efficient detection of Cry1Ab protein based on the proximity hybridization driven specific desorption of multifunctional probe. J. Hazard. Mater. 2023, 441, 129759.

[17]

Hu, X.; Wang, Y.; Zuping, X.; Song, P.; Wang, A. J.; Qian, Z. S.; Yuan, P. X.; Zhao, T. J.; Feng, J. J. Novel aggregation-enhanced PEC photosensitizer based on electrostatic linkage of ionic liquid with protoporphyrin IX for ultrasensitive detection of molt-4 cells. Anal. Chem. 2022, 94, 3708–3717.

[18]

Ge, R.; Dai, H. J.; Zhang, S. M.; Wei, J.; Jiao, T. H.; Chen, Q. M.; Chen, Q. S.; Chen, X. M. A collection of RPA-based photoelectrochemical assays for the portable detection of multiple pathogens. Anal. Chem. 2023, 95, 7379–7386.

[19]

Li, H. B.; Han, M.; Weng, X.; Zhang, Y. Y.; Li, J. DNA-tetrahedral-nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano 2021, 15, 1710–1717.

[20]

Wang, B.; Cao, J. T.; Dong, Y. X.; Liu, F. R.; Fu, X. L.; Ren, S. W.; Ma, S. H.; Liu, Y. M. An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays. Chem. Commun. 2018, 54, 806–809.

[21]

Wang, S. P.; Wang, F. F.; Fu, C. P.; Sun, Y. N.; Zhao, J. G.; Li, N.; Liu, Y. Q.; Ge, S. G.; Yu, J. H. AgInSe2-sensitized ZnO nanoflower wide-spectrum response photoelectrochemical/visual sensing platform via Au@nanorod-anchored CeO2 octahedron regulated signal. Anal. Chem. 2020, 92, 7604–7611.

[22]

Zhang, Y.; Hao, N.; Zhou, Z.; Hua, R.; Qian, J.; Liu, Q.; Li, H. N.; Wang, K. A potentiometric resolved ratiometric photoelectrochemical aptasensor. Chem. Commun. 2017, 53, 5810–5813.

[23]

Hao, Q.; Shan, X. N.; Lei, J. P.; Zang, Y.; Yang, Q. H.; Ju, H. X. A wavelength-resolved ratiometric photoelectrochemical technique: Design and sensing applications. Chem. Sci. 2016, 7, 774–780.

[24]

Zhang, Q. Q.; Fu, Y. M.; Xiao, K.; Du, C. C.; Zhang, X. H.; Chen, J. H. Sensitive dual-mode biosensors for CYFRA21-1 assay based on the dual-signaling electrochemical ratiometric strategy and “on-off-on” PEC method. Anal. Chem. 2021, 93, 6801–6807.

[25]

Zhu, L. L.; Wei, T. X.; Yu, R. Z.; Tu, W. W.; Dai, Z. H. A versatile switchable dual-modal colorimetric and photoelectrochemical biosensing strategy via light-controlled sway of a signal-output transverter. Chem. Commun. 2021, 57, 3223–3226.

[26]

Komathi, S.; Muthuchamy, N.; Lee, K. P.; Gopalan, A. I. Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks. Biosens. Bioelectron. 2016, 84, 64–71.

[27]

Xu, J. H.; Zeng, R. J.; Huang, L. T.; Qiu, Z. L.; Tang, D. P. Dual-signaling photoelectrochemical biosensor based on biocatalysis-induced vulcanization of Bi2MoO6 nanosheets. Anal. Chem. 2022, 94, 11441–11448.

[28]

Zheng, L.; Guo, Q. F.; Yang, C. N.; Wang, J. J.; Xu, X. J.; Nie, G. M. Electrochemiluminescence and photoelectrochemistry dual-signal immunosensor based on Ru(bpy)32+-functionalized MOF for prostate-specific antigen sensitive detection. Sens. Actuators B: Chem. 2023, 379, 133269.

[29]

Hao, Y. Q.; Li, T.; Luo, L. J.; Fan, S. N.; Chen, S.; Zhang, Y. T.; Tang, Z. L.; Xu, M. T.; Zeng, R. J.; Chen, S. A reaction based dual-modal probe for fluorescent and photoelectrochemical determination of thiophenol. Sens. Actuators B: Chem. 2022, 369, 132405.

[30]

Zhu, J. H.; Wang, M.; Tu, L. H.; Wang, A. J.; Luo, X. L.; Mei, L. P.; Zhao, T. J.; Feng, J. J. Nanosheets-assembled hollow CdIn2S4 microspheres-based photoelectrochemical and fluorescent dual-mode aptasensor for highly sensitive assay of 17β-estradiol based on magnetic separation and enzyme catalytic amplification. Sens. Actuators B: Chem. 2021, 347, 130553.

[31]

Geng, W. C.; Xue, L. S.; Li, Y. L.; Ji, J. Y.; Yuan, X. X.; Ding, L. H.; Yang, R. Y. A dual-model immobilization-free photoelectrochemical/visual colorimetric bioanalysis based on microemulsion self-assemblies mediated multifunctional signal amplification strategy. Anal. Chim. Acta 2023, 1277, 341644.

[32]

Li, H. H.; Sheng, W.; Haruna, S. A.; Bei, Q. Y.; Wei, W. Y.; Hassan, M. M.; Chen, Q. S. Recent progress in photoelectrochemical sensors to quantify pesticides in foods: Theory, photoactive substrate selection, recognition elements and applications. TrAC Trends Anal. Chem. 2023, 164, 117108.

[33]

Liu, Q.; Zhang, H.; Jiang, H. H.; Yang, P. L.; Luo, L. J.; Niu, Q. J.; You, T. Y. Photoactivities regulating of inorganic semiconductors and their applications in photoelectrochemical sensors for antibiotics analysis: A systematic review. Biosens. Bioelectron. 2022, 216, 114634.

[34]

Qureshi, A.; Shaikh, T.; Niazi, J. H. Semiconductor quantum dots in photoelectrochemical sensors from fabrication to biosensing applications. Analyst 2023, 148, 1633–1652.

[35]

Cao, S. W.; Liu, X. F.; Yuan, Y. P.; Zhang, Z. Y.; Liao, Y. S.; Fang, J.; Loo, S. C. J.; Sum, T. C.; Xue, C. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Appl. Catal. B: Environ. 2014, 147, 940–946.

[36]

Zhao, W. W.; Han, Y. M.; Zhu, Y. C.; Zhang, N.; Xu, J. J.; Chen, H. Y. DNA labeling generates a unique amplification probe for sensitive photoelectrochemical immunoassay of HIV-1 p24 antigen. Anal. Chem. 2015, 87, 5496–5499.

[37]

Gao, Y.; Zeng, Y. Y.; Liu, X. L.; Tang, D. P. Liposome-mediated in situ formation of type-I heterojunction for amplified photoelectrochemical immunoassay. Anal. Chem. 2022, 94, 4859–4865.

[38]

Song, J.; Wu, S.; Xing, P. P.; Zhao, Y. Q.; Yuan, J. L. Di-branched triphenylamine dye sensitized TiO2 nanocomposites with good photo-stability for sensitive photoelectrochemical detection of organophosphate pesticides. Anal. Chim. Acta 2018, 1001, 24–31.

[39]

Qin, J.; Li, J. J.; Zeng, H. S.; Tang, J.; Tang, D. P. Recent advances in metal-organic framework-based photoelectrochemical and electrochemiluminescence biosensors. Analyst 2023, 148, 2200–2213.

[40]

Cao, J. T.; Lv, J. L.; Liao, X. J.; Ma, S. H.; Liu, Y. M. Photogenerated hole-induced chemical-chemical redox cycling strategy on a direct Z-scheme Bi2S3/Bi2MoO6 heterostructure photoelectrode: Toward an ultrasensitive photoelectrochemical immunoassay. Anal. Chem. 2021, 93, 9920–9926.

[41]

Xiao, K.; Zhu, R.; Du, C. C.; Zheng, H. J.; Zhang, X. H.; Chen, J. H. Zinc-air battery-assisted self-powered PEC sensors for sensitive assay of PTP1B activity based on perovskite quantum dots encapsulated in vinyl-functionalized covalent qrganic frameworks. Anal. Chem. 2022, 94, 9844–9850.

[42]

Zeng, R. J.; Xu, J. H.; Liang, T. K.; Li, M. J.; Tang, D. P. Photocurrent-polarity-switching photoelectrochemical biosensor for switching spatial distance electroactive tags. ACS Sens. 2023, 8, 317–325.

[43]

Chen, J. Y.; Ling, Y. H.; Yuan, X. M.; Li, S. L.; Wang, G.; Zhang, Z. J.; Wang, G. X. P/N junction TiO2 nanotube-polyaniline molecular imprinting photoelectrochemistry micro-sensor with a self-elution function can efficiently detect chloramphenicol. ACS Sustain. Chem. Eng. 2023, 11, 13988–13999.

[44]

Ahmadi, N.; Bagherzadeh, M.; Nemati, A. Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite. Biosens. Bioelectron. 2020, 151, 111977.

[45]

Cai, Q. Q.; Wu, D.; Li, H. K.; Jie, G. F.; Zhou, H. Versatile photoelectrochemical and electrochemiluminescence biosensor based on 3D CdSe QDs-DNA nanonetwork-SnO2 nanoflower coupled with DNA walker amplification for HIV detection. Biosens. Bioelectron. 2021, 191, 113455.

[46]

Zha, R.; Wu, R. Y.; Zong, Y. G.; Wang, Z. G.; Wu, T.; Zhong, Y. Y.; Liang, H. P.; Chen, L. F.; Li, C. Y.; Wang, Y. Y. A high performance dual-mode biosensor based on Nd-MOF nanosheets functionalized with ionic liquid and gold nanoparticles for sensing of ctDNA. Talanta 2023, 258, 124377.

[47]

Chen, Y.; Zhou, S. W.; Li, L. L.; Zhu, J. J. Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 2017, 12, 98–115.

[48]

Huang, S. Y.; Guo, M. L.; Tan, J. A.; Geng, Y. Y.; Wu, J. Y.; Tang, Y. W.; Su, C.; Lin, C. C.; Liang, Y. Novel fluorescence sensor based on all-inorganic perovskite quantum dots coated with molecularly imprinted polymers for highly selective and sensitive detection of omethoate. ACS Appl. Mater. Interfaces 2018, 10, 39056–39063.

[49]

Jiao, Y.; Li, H. Y.; Wang, H.; Feng, Q. M.; Gao, Y. G. Proximity hybridization regulated dual-mode ratiometric biosensor for estriol detection in pregnancy serum. Anal. Chim. Acta 2023, 1278, 341689.

[50]

Zhao, W. W.; Wang, J.; Xu, J. J.; Chen, H. Y. Energy transfer between CdS quantum dots and Au nanoparticles in photoelectrochemical detection. Chem. Commun. 2011, 47, 10990–10992.

[51]

Zhao, W. W.; Yu, P. P.; Shan, Y.; Wang, J.; Xu, J. J.; Chen, H. Y. Exciton-plasmon interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical system and its biosensing application. Anal. Chem. 2012, 84, 5892–5897.

[52]

Dong, Y. X.; Jin, Z. H.; Zhang, X.; Tang, Y. Y.; Tian, Y.; Zhu, J. J.; Min, Q. H. A six-plex switchable DNA origami cipher disk for tandem-in-time cryptography. Chem. Commun. 2022, 58, 6124–6127.

[53]

Dong, Y. X.; Liu, J. L.; Lu, X. Z.; Duan, J. L.; Zhou, L. Q.; Dai, L. Z.; Ji, M.; Ma, N. N.; Wang, Y.; Wang, P. et al. Two-stage assembly of nanoparticle superlattices with multiscale organization. Nano Lett. 2022, 22, 3809–3817.

[54]

Hu, Y.; Fan, C. H. Nanocomposite DNA hydrogels emerging as programmable and bioinstructive materials systems. Chem 2022, 8, 1554–1566.

[55]

Ye, D. K.; Li, M.; Zhai, T. T.; Song, P.; Song, L.; Wang, H.; Mao, X. H.; Wang, F.; Zhang, X. L.; Ge, Z. L. et al. Encapsulation and release of living tumor cells using hydrogels with the hybridization chain reaction. Nat. Protoc. 2020, 15, 2163–2185.

[56]

Xu, M. R.; Chen, K.; Zhu, L.; Zhang, S.; Wang, M. H.; He, L. H.; Zhang, Z. H.; Du, M. MOF@COF heterostructure hybrid for dual-mode photoelectrochemical-electrochemical HIV-1 DNA sensing. Langmuir 2021, 37, 13479–13492

[57]

Gonçalves, J. M.; Iglesias, B. A.; Martins, P. R.; Angnes, L. Recent advances in electroanalytical drug detection by porphyrin/phthalocyanine macrocycles: Developments and future perspectives. Analyst 2021, 146, 365–381.

[58]

Sridharan, G.; Atchudan, R.; Magesh, V.; Arya, S.; Ganapathy, D.; Nallaswamy, D.; Sundramoorthy, A. K. Advanced electrocatalytic materials based biosensors for cancer cell detection—A review. Electroanalysis 2023, 35, e202300093.

[59]

Dong, J. B.; Li, X. Y.; Zhou, S. Y.; Liu, Y.; Deng, L. Y.; Chen, J.; Hou, J. Z.; Hou, C. J.; Huo, D. Q. CRISPR/Cas12a-powered EC/FL dual-mode controlled-release homogeneous biosensor for ultrasensitive and cross-validated detection of messenger ribonucleic acid. Anal. Chem. 2023, 95, 12122–12130

[60]

Gao, Y.; Zhang, X. C.; Yan, J. Y.; Guan, Q. L.; Xing, Y. H.; Song, W. B. Split-type cascaded silver etching for “on-super off” PEC-EC dual-mode immunosensing of α-SynO. Sens. Actuators B: Chem. 2022, 358, 131449.

[61]

Nallal, M.; Anantha Iyengar, G.; Pill-Lee, K. New titanium dioxide-based heterojunction nanohybrid for highly selective photoelectrochemical-electrochemical dual-mode sensors. ACS Appl. Mater. Interfaces 2017, 9, 37166–37183.

[62]

Lu, L. Y.; Zhou, Y.; Zheng, T. T.; Tian, Y. SERS and EC dual-mode detection for dopamine based on WO3-SnO2 nanoflake arrays. Nano Res. 2023, 16, 4049–4054.

[63]

Wei, J. J.; Wang, G. Q.; Zheng, J. Y.; Wang, A. J.; Mei, L. P.; Feng, J. J. Dual-mode photoelectrochemical and electrochemical immunosensors for human epididymis protein 4 based on SPR-promoted Au nanoparticle/CdS nanosheet heterostructures. ACS Appl. Nano Mater. 2022, 5, 14934–14941.

[64]

Wang, T. T.; He, Y. F.; Shi, L.; Cao, J. P.; Zeng, B. Z.; Zhao, F. Q. BiOBr0.8I0.2/CoS x nanostructure-based photoelectrochemical and electrochemical dual-mode sensing platform for the ultrasensitive and highly selective detection of HER2. ACS Appl. Nano Mater. 2022, 5, 15748–15754.

[65]

Zhang, J. L.; Gao, Y.; Zhang, X. C.; Feng, Q. S.; Zhan, C. X.; Song, J. L.; Zhang, W. H.; Song, W. B. “Dual signal-on” split-type aptasensor for TNF-α: Integrating MQDs/ZIF-8@ZnO NR arrays with MB-liposome-mediated signal amplification. Anal. Chem. 2021, 93, 7242–7249

[66]

Zhang, Q. Q.; Liu, S. Y.; Du, C. C.; Fu, Y. M.; Xiao, K.; Zhang, X. H.; Chen, J. H. Highly selective and sensitive microRNA-210 assay based on dual-signaling electrochemical and photocurrent-polarity-switching strategies. Anal. Chem. 2021, 93, 14272–14279.

[67]

Qileng, A.; Zhu, H. S.; Liu, S. Q.; He, L.; Qin, W. W.; Liu, W. P.; Xu, Z. L.; Liu, Y. J. Machine learning: Assisted multivariate detection and visual image matching to build broad-specificity immunosensor. Sens. Actuators B: Chem. 2021, 339, 129872.

[68]

Wang, H. X.; Wu, T. T.; Li, M. Q.; Tao, Y. Recent advances in nanomaterials for colorimetric cancer detection. J. Mater. Chem. B 2021, 9, 921–938.

[69]

Xu, J. W.; Liang, C. C.; Gao, Z. D.; Song, Y. Y. Construction of nanoreactors on TiO2 nanotube arrays as a POCT device for sensitive colorimetric detection. Chin. Chem. Lett. 2023, 34, 107863.

[70]

Yao, H.; Li, S. Y.; Zhang, H.; Pang, X. Y.; Lu, J. L.; Chen, C.; Jiang, W.; Yang, L. P.; Wang, L. L. Tetralactam macrocycle based indicator displacement assay for colorimetric and fluorometric dual-mode detection of urinary uric acid. Chem. Commun. 2023, 59, 5411–5414.

[71]

Sahu, B.; Kurrey, R.; Deb, M. K.; Shrivas, K.; Karbhal, I.; Khalkho, B. R. A simple and cost-effective paper-based and colorimetric dual-mode detection of arsenic(III) and lead(II) based on glucose-functionalized gold nanoparticles. RSC Adv. 2021, 11, 20769–20780.

[72]

Liang, P. H.; Guo, Q.; Zhao, T. Y.; Wen, C. Y.; Tian, Z. Y.; Shang, Y. X.; Xing, J. Y.; Jiang, Y. Z.; Zeng, J. B. Ag nanoparticles with ultrathin Au shell-based lateral flow immunoassay for colorimetric and SERS dual-mode detection of SARS-CoV-2 IgG. Anal. Chem. 2022, 94, 8466–8473.

[73]

Zhou, Y. T.; Lv, S. Z.; Wang, X. Y.; Kong, L. Y.; Bi, S. Biometric photoelectrochemical-visual multimodal biosensor based on 3D hollow HCdS@Au nanospheres coupled with target-induced ion exchange reaction for antigen detection. Anal. Chem. 2022, 94, 14492–14501.

[74]

Wei, J.; Chang, W. D.; Qileng, A.; Liu, W. P.; Zhang, Y.; Rong, S. Y.; Lei, H. T.; Liu, Y. J. Dual-modal split-type immunosensor for sensitive detection of microcystin-LR: Enzyme-induced photoelectrochemistry and colorimetry. Anal. Chem. 2018, 90, 9606–9613.

[75]

Fu, Y. M.; Du, C. C.; Zhang, Q. Q.; Xiao, K.; Zhang, X. H.; Chen, J. H. Colorimetric and photocurrent-polarity-switching photoelectrochemical dual-mode sensing platform for highly selective detection of mercury ions based on the split G-quadruplex-hemin complex. Anal. Chem. 2022, 94, 15040–15047.

[76]

Wei, J.; Liu, S. Q.; Qileng, A.; Qin, W. W.; Liu, W. P.; Wang, K.; Liu, Y. J. A photoelectrochemical/colorimetric immunosensor for broad-spectrum detection of ochratoxins using bifunctional copper oxide nanoflowers. Sens. Actuators B: Chem. 2021, 330, 1129380.

[77]

Li, H. K.; Cai, Q. Q.; Xue, Y. L.; Jie, G. F.; Zhou, H. Multi-mode label-free biosensor based on methylene blue sensitized C3N4/BiVO4 heterostructure for ultrasensitive detection of miRNA-122. Sens. Actuators B: Chem. 2023, 391, 134062.

[78]

Xue, Y. L.; Dong, W. S.; Wang, B.; Jie, G. F. A multifunctional electrochemiluminescence and photoelectrochemical biosensor based on a quantum dot ion-exchange reaction for two-channel detection of thrombin. Analyst 2023, 148, 4456–4462.

[79]

Ge, J. J.; Zhao, Y.; Gao, X. S.; Li, H. K.; Jie, G. F. Versatile electrochemiluminescence and photoelectrochemical detection of glutathione using Mn2+ substitute target by DNA-walker-induced allosteric switch and signal amplification. Anal. Chem. 2019, 91, 14117–14124.

[80]

Yang, J.; Chen, S. W.; Zhang, B. W.; Tu, Q.; Wang, J. Y.; Yuan, M. S. Non-biological fluorescent chemosensors for pesticides detection. Talanta 2022, 240, 123200.

[81]

Yang, M.; Jin, H.; Gui, R. J. Metal-doped boron quantum dots for versatile detection of lactate and fluorescence bioimaging. ACS Appl. Mater. Interfaces 2022, 14, 56986–56997.

[82]

Han, X. Y.; Wang, Y.; Huang, Y.; Wang, X. Y.; Choo, J.; Chen, L. X. Fluorescent probes for biomolecule detection under environmental stress. J. Hazard. Mater. 2022, 431, 128527.

[83]

Fernández, A.; Vendrell, M. Smart fluorescent probes for imaging macrophage activity. Chem. Soc. Rev. 2016, 45, 1182–1196.

[84]

He, H. Y.; Sun, D. W.; Wu, Z. H.; Pu, H. B.; Wei, Q. Y. On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends Food Sci. Technol. 2022, 119, 243–256.

[85]

Han, Q. Z.; Zhao, X.; Zhang, X. L.; Na, N.; Ouyang, J. A rationally designed triple-qualitative and double-quantitative high precision multi-signal readout sensing platform. Sens. Actuators B: Chem. 2022, 360, 131663.

[86]

Wu, T. T.; Yu, S. Q.; Dai, L.; Feng, J. H.; Ren, X.; Ma, H. M.; Wang, X. Y.; Wei, Q.; Ju, H. X. CuO nanozymes as multifunctional signal labels for efficiently quenching the photocurrent of ZnO/Au/AgSbS2 hybrids and initiating a strong fluorescent signal in a dual-mode microfluidic sensing platform. ACS Sens. 2022, 7, 1732–1739.

[87]

Xiao, K.; Fu, Y. M.; Zhu, R.; Zhang, X. H.; Du, C. C.; Chen, J. H. Photoelectrochemical and quartz crystal microbalance dual-mode assay of protein tyrosine phosphatase 1B activity based on hollow CuO and TiO2 polyhedra. Sens. Actuators B: Chem. 2022, 353, 131179.

[88]

Lu, L. L.; Hu, X. H.; Zeng, R. J.; Lin, Q. Y.; Huang, X.; Wei, Q. H.; Tang, D. P.; Knopp, D. Ag/MoO3-Pd-mediated gasochromic reaction: An efficient dual-mode photoelectrochemical and photothermal immunoassay. Biosens. Bioelectron. 2023, 230, 115267.

[89]

Sun, M. J.; Zhu, Y. H.; Yan, K.; Zhang, J. D. Dual-mode visible light-induced aptasensing platforms for bleomycin detection based on CdS-In2S3 heterojunction. Biosens. Bioelectron. 2019, 145, 111712.

[90]

Wu, T. T.; Du, Y.; Gao, Z. F.; Xu, K.; Dai, L.; Liu, L.; Li, F. Y.; Wei, Q.; Ju, H. X. Dual direct Z-scheme heterojunction with stable electron supply to a Au/PANI photocathode for ultrasensitive photoelectrochemical and electrochromic visualization detection of ofloxacin in a microfluidic sensing platform. Anal. Chem. 2023, 95, 1627–1634.

[91]

Bu, Y. W.; Wang, K.; Yang, X. Y.; Nie, G. M. Sensitive dual-mode sensing platform for Amyloid β detection: Combining dual Z-scheme heterojunction enhanced photoelectrochemistry analysis and dual-wavelength ratiometric electrochemiluminescence strategy. Biosens. Bioelectron. 2023, 237, 115507.

[92]

Leng, D. Q.; Xu, R.; Ren, X.; Ma, H. M.; Liu, L.; Wei, Q.; Ju, H. X. Self-shedding of multifunctional biomolecular nanocarriers for H-FABP monitoring in magnetic separation self-powered photoelectrochemical and colorimetric immunoassay platform. Chem. Eng. J. 2023, 469, 143876.

[93]

Han, Q. Z.; Zhao, X.; Na, N.; Ouyang, J. Integrating near-infrared visual fluorescence with a photoelectrochemical sensing system for dual readout detection of biomolecules. Anal. Chem. 2021, 93, 3486–3492.

[94]

Sun, J. L.; Li, L.; Ge, S. G.; Zhao, P. N.; Zhu, P. H.; Wang, M. L.; Yu, J. H. Dual-mode aptasensor assembled by a WO3/Fe2O3 heterojunction for paper-based colorimetric prediction/photoelectrochemical multicomponent analysis. ACS Appl. Mater. Interfaces 2021, 13, 3645–3652.

[95]

Deng, H. M.; Chai, Y. Q.; Yuan, R.; Yuan, Y. L. In situ formation of multifunctional DNA nanospheres for a sensitive and accurate dual-mode biosensor for photoelectrochemical and electrochemical assay. Anal. Chem. 2020, 92, 8364–8370

[96]

Shen, X. L.; Liu, D.; Zhu, C. X.; Li, Y. Y.; Liu, Y.; You, T. Y. Photoelectrochemical and electrochemical ratiometric aptasensing: A case study of streptomycin. Electrochem. Commun. 2020, 110, 106637.

[97]

Liu, S. D.; Meng, S. Y.; Wang, M.; Li, W. J.; Dong, N.; Liu, D.; Li, Y. Y.; You, T. Y. In-depth interpretation of aptamer-based sensing on electrode: Dual-mode electrochemical-photoelectrochemical sensor for the ratiometric detection of patulin. Food Chem. 2023, 410, 135450.

[98]

Liu, D.; Meng, S. Y.; Shen, X. L.; Li, Y. Y.; Yan, X. H.; You, T. Y. Dual-ratiometric aptasensor for streptomycin detection based on the in-situ coupling of photoelectrochemical and electrochemical assay with a bifunctional probe of methylene blue. Sens. Actuators B: Chem. 2021, 332, 129529.

[99]

Zhang, Q. Q.; Yang, H. K.; Du, C. C.; Liu, S. Y.; Zhang, X. H.; Chen, J. H. Bifunctional magnetic Fe3O4@Cu2O@TiO2 nanosphere-mediated dual-mode assay of PTP1B activity based on photocurrent polarity switching and nanozyme-engineered biocatalytic precipitation strategies. Anal. Chem. 2022, 94, 13342–13349.

[100]

Wang, T. T.; Shi, L.; He, Y. F.; Ran, Y. Q.; Zeng, B. Z.; Zhao, F. Q. Highly sensitive photoelectrochemical and electrochemical dual-mode biosensing of polynucleotide kinase based on multifunctional BiOBr0.8I0.2/CuSCN composite and biocatalytic precipitation. Sens. Actuators B: Chem. 2023, 388, 133818.

[101]

Liu, M. W.; Chen, G. J.; Qin, Y.; Li, J. L.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. Proton-regulated catalytic activity of nanozymes for dual-modal bioassay of urease activity. Anal. Chem. 2021, 93, 9897–9903.

[102]

Wang, J.; Chen, J. W.; Liu, F. Y.; Jia, M.; Zhang, Z. L.; Liu, M.; Jiang, L. X. Renewable WO3/Bi2O3 heterojunction for photoelectrochemical and visual dual-mode detection of hydrogen sulfide. Sens. Actuators B: Chem. 2022, 369, 132274.

[103]

Xu, H.; Shang, H. Y.; Liu, Q. Y.; Wang, C.; Di, J. W.; Chen, C. Y.; Jin, L. J.; Du, Y. K. Dual mode electrochemical-photoelectrochemical sensing platform for hydrogen sulfide detection based on the inhibition effect of titanium dioxide/bismuth tungstate/silver heterojunction. J. Colloid Interface Sci. 2021, 581, 323–333.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2023
Revised: 10 January 2024
Accepted: 10 January 2024
Published: 29 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Nos. 52303153 and 51873145), the Basic science (Natural science) research project in universities of Jiangsu Province (No. 23KJB150035), the Excellent Youth Foundation of Jiangsu Scientific Committee (No. BK20170065), the Qing Lan Project, the 5th 333 High-level Talents Training Project of Jiangsu Province (No. BRA2018340), and the Six Talent Peaks Project in Jiangsu Province (No. XCL-79).

Return