Journal Home > Volume 17 , Issue 3

Cathode interfacial materials (CIMs) stand as critical elemental in organic solar cells (OSCs), which can align energy levels, and foster ohmic contacts between the cathode and active layer of the OSCs. Nevertheless, the lagging advancement in CIMs has concurrently engendered the oversight of theoretical inquiries pertaining to the impact of molecular structure on their performance. Delving into this realm, we present two propeller-shaped isomers, 4,4',4''-(benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-triyl)tris(2-(3-(dimethylamino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione) (3ONIN) and 6,6',6''-(benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-triyl)tris(2-(3-(dimethylamino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione) (3PNIN), distinguished by their molecular planarity, as a promising foundation for crafting highly efficient OSCs. This study illuminates the superiority of 3PNIN with more plane structure, exemplified by its enhanced molar extinction coefficient, deeper lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, intensified self-doping effect, heightened electron mobility, and elevated conductivity, in comparison to its counterpart, 3ONIN. As a result, 3PNIN and 3ONIN-treated OSC devices yield efficiencies of 17.73% and 16.82%, respectively. This finding serves as a compelling validation of the critical role played by molecular planarity in influencing CIM performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Propeller-shaped NI isomers of cathode interfacial material for efficient organic solar cells

Show Author's information Hao Liu1,§Jilei Jiang1,§Shuixing Dai1( )Liangmin Yu2Xu Zhang3Xianbiao Hou1Ke Gao3Heqing Jiang4Minghua Huang1( )
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266100, China
Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

§ Hao Liu and Jilei Jiang contributed equally to this work.

Abstract

Cathode interfacial materials (CIMs) stand as critical elemental in organic solar cells (OSCs), which can align energy levels, and foster ohmic contacts between the cathode and active layer of the OSCs. Nevertheless, the lagging advancement in CIMs has concurrently engendered the oversight of theoretical inquiries pertaining to the impact of molecular structure on their performance. Delving into this realm, we present two propeller-shaped isomers, 4,4',4''-(benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-triyl)tris(2-(3-(dimethylamino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione) (3ONIN) and 6,6',6''-(benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-triyl)tris(2-(3-(dimethylamino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione) (3PNIN), distinguished by their molecular planarity, as a promising foundation for crafting highly efficient OSCs. This study illuminates the superiority of 3PNIN with more plane structure, exemplified by its enhanced molar extinction coefficient, deeper lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, intensified self-doping effect, heightened electron mobility, and elevated conductivity, in comparison to its counterpart, 3ONIN. As a result, 3PNIN and 3ONIN-treated OSC devices yield efficiencies of 17.73% and 16.82%, respectively. This finding serves as a compelling validation of the critical role played by molecular planarity in influencing CIM performance.

Keywords: organic solar cells, propeller-shaped molecules, cathode interfacial materials, naphthalimide (NI) isomers

References(39)

[1]

Yao, H. F.; Hou, J. H. Recent advances in single-junction organic solar cells. Angew. Chem. 2022, 134, e202209021.

[2]

Yang, Y.; Wang, J. W.; Zu, Y. E.; Liao, Q.; Zhang, S. Q.; Zheng, Z.; Xu, B. W.; Hou, J. H. Robust and hydrophobic interlayer material for efficient and highly stable organic solar cells. Joule 2023, 7, 545–557.

[3]

Zhang, G. C.; Chen, Q. M.; Zhang, Z.; Fang, J.; Zhao, C. W.; Wei, Y.; Li, W. W. Co-La-based hole-transporting layers for binary organic solar cells with 18.82% efficiency. Angew. Chem. 2023, 135, e202216304.

[4]

Liu, Y. H.; Liu, B. W.; Ma, C. Q.; Huang, F.; Feng, G. T.; Chen, H. Z.; Hou, J. H.; Yan, L. P.; Wei, Q. Y.; Luo, Q. et al. Recent progress in organic solar cells (Part I material science). Sci. China Chem. 2022, 65, 224–268.

[5]

Dai, S. X.; Li, T. F.; Wang, W.; Xiao, Y. Q.; Lau, T. K.; Li, Z. Y.; Liu, K.; Lu, X. H.; Zhan, X. W. Enhancing the performance of polymer solar cells via core engineering of NIR-absorbing electron acceptors. Adv. Mater. 2018, 30, 1706571.

[6]

Fan, Q. P.; Xiao, Z.; Wang, E. G.; Ding, L. M. Polymer acceptors based on Y6 derivatives for all-polymer solar cells. Sci. Bull. 2021, 66, 1950–1953.

[7]

Zhao, C. B.; Ma, J. Q.; Ge, H. G.; Tang, Z. H.; Jin, L. X.; Wang, W. L. Theoretical prediction of the photovoltaic properties of BFBPD-PC61BM system as a promising organic solar cell. Chin. J. Struct. Chem. 2018, 37, 15–26.

[8]

Lin, Y. Z.; Li, Y. F.; Zhan, X. W. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 2012, 41, 4245–4272.

[9]

Cheng, Y. J.; Huang, B.; Huang, X. X.; Zhang, L. F.; Kim, S.; Xie, Q.; Liu, C.; Heumüller, T.; Liu, Z. J.; Zhang, Y. H. et al. Oligomer-assisted photoactive layers enable >18% efficiency of organic solar cells. Angew. Chem. 2022, 134, e202200329.

[10]

Dai, S. X.; Zhao, F. W.; Zhang, Q. Q.; Lau, T. K.; Li, T. F.; Liu, K.; Ling, Q. D.; Wang, C. R.; Lu, X. H.; You, W. et al. Fused nonacyclic electron acceptors for efficient polymer solar cells. J. Am. Chem. Soc. 2017, 139, 1336–1343.

[11]

Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

[12]

Dai, S. X.; Xiao, Y. Q.; Xue, P. Y.; James Rech, J.; Liu, K.; Li, Z. Y.; Lu, X. H.; You, W.; Zhan, X. W. Effect of core size on performance of fused-ring electron acceptors. Chem. Mater. 2018, 30, 5390–5396.

[13]

Dai, S.; Zhan, X. Fused-ring electron acceptors for organic solar cells. Acta Polym. Sin. 2017, 11, 1706–1714

[14]

Zhu, L.; Zhang, M.; Xu, J. Q.; Li, C.; Yan, J.; Zhou, G. Q.; Zhong, W. K.; Hao, T. Y.; Song, J. L.; Xue, X. N. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.

[15]

Yao, J.; Chen, Q.; Zhang, C.; Zhang, Z. G.; Li, Y. F. Perylene-diimide-based cathode interlayer materials for high performance organic solar cells. SusMat 2022, 2, 243–263.

[16]

Cheuh, C. C.; Li, C. Z.; Jen, A. K. Y. Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 2015, 8, 1160–1189.

[17]

Duan, C. H.; Wang, L.; Zhang, K.; Guan, X.; Huang, F. Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes. Adv. Mater. 2011, 23, 1665–1669.

[18]

Zhang, Z. G.; Qi, B. Y.; Jin, Z. W.; Chi, D.; Qi, Z.; Li, Y. F.; Wang, J. Z. Perylene diimides: A thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy Environ. Sci. 2014, 7, 1966–1973.

[19]

Yao, J.; Qiu, B. B.; Zhang, Z. G.; Xue, L. W.; Wang, R.; Zhang, C. F.; Chen, S. S.; Zhou, Q. J.; Sun, C. K.; Yang, C. et al. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 2020, 11, 2726.

[20]
Liu, H.; Liu, S. N.; Zhao, Y.; Jiang, J. L.; Feng, X. R.; Sun, M. L.; Yu, L. M.; Dai, S. X. “A-π-A” type naphthalimide-based cathode interlayers for efficient organic solar cells. Dyes Pigm. 2023 , 209, 110911.
DOI
[21]

Zhao, Y.; Liu, Y.; Liu, X. J.; Kang, X.; Yu, L. M.; Dai, S. X.; Sun, M. L. Aminonaphthalimide-based molecular cathode interlayers for As-cast organic solar cells. ChemSusChem. 2021, 14, 4783–4792.

[22]

Zhao, Y.; Liu, X. J.; Jing, X.; Liu, S. N.; Liu, H.; Liu, Y.; Yu, L. M.; Dai, S. X.; Sun, M. L. Multi-armed imide-based molecules promote interfacial charge transfer for efficient organic solar cells. Chem. Eng. J. 2022, 441, 135894.

[23]

Zhao, Y.; Liu, X. J.; Jing, X.; Liu, Y.; Liu, H.; Li, S. N.; Yu, L. M.; Dai, S. X.; Sun, M. L. Achieving the low interfacial tension by balancing crystallization and film-forming ability of the cathode interlayer for organic solar cells. J. Colloid Interface Sci. 2022, 627, 880–890.

[24]

Rossi, S.; Bisello, A.; Cardena, R.; Orian, L.; Santi, S. Benzodithiophene and benzotrithiophene as π cores for two- and three-blade propeller-shaped ferrocenyl-based conjugated systems. Eur. J. Org. Chem. 2017, 2017, 5966–5974.

[25]

Yang, Q. G.; Yu, W. Y.; Lv, J.; Huang, P. H.; He, G. T.; Xiao, Z. Y.; Kan, Z. P.; Lu, S. R. Effects of fluorination position on all-polymer organic solar cells. Dyes Pigm. 2022, 200, 110180.

[26]

Chen, T. Y.; Li, S. X.; Li, Y. K.; Chen, Z.; Wu, H. T.; Lin, Y.; Gao, Y.; Wang, M. T.; Ding, G. Y.; Min, J. et al. Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% efficiency. Adv. Mater. 2023, 35, 2300400.

[27]

Malliaras, G. G.; Salem, J. R.; Brock, P. J.; Scott, C. Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys. Rev. B 1998, 58, R13411–R13414.

[28]

Wu, M. M.; Shi, L. T.; Hu, Y.; Chen, L.; Hu, T.; Zhang, Y. D.; Yuan, Z. Y.; Chen, Y. W. Additive-free non-fullerene organic solar cells with random copolymers as donors over 9% power conversion efficiency. Chin. Chem. Lett. 2019, 30, 1161–1167.

[29]

Liu, M.; Li, M. Y.; Jiang, Y. F.; Ma, Z. F.; Liu, D. Z. J.; Ren, Z. J.; Russell, T. P.; Liu, Y. Conductive ionenes promote interfacial self-doping for efficient organic solar cells. ACS Appl. Mater. Interfaces 2021, 13, 41810–41817.

[30]

Xu, W. J.; Zi, M.; Zhang, M.; Hao, R. F.; Shen, P.; Zhao, B.; Tan, S. T. Improved photovoltaic properties of copolymer donors by regulating alkyl and alkylsilyl side chains. Dyes Pigm. 2022, 197, 109842.

[31]

Wang, K.; Xu, Z.; Geng, Y.; Li, H.; Lin, C. L.; Mi, L. W.; Guo, X.; Zhang, M. J.; Li, Y. F. Synthesis of organic molecule donor for efficient organic solar cells with low acceptor content. Org. Electron. 2019, 64, 54–61.

[32]

Bolag, A.; López-Andarias, J.; Lascano, S.; Soleimanpour, S.; Atienza, C.; Sakai, N.; Martín, N.; Matile, S. A collection of fullerenes for synthetic access toward oriented charge-transfer cascades in triple-channel photosystems. Angew. Chem., Int. Ed. 2014, 53, 4890–4895.

[33]

Yang, R.; Tian, J.; Liu, W. X.; Wang, Y. X.; Chen, Z.; Russell, T. P.; Liu, Y. Nonconjugated self-doped polymer zwitterions as efficient interlayers for high performance organic solar cells. Chem. Mater. 2022, 34, 7293–7301.

[34]

Dai, S. X.; Zhou, J. D.; Chandrabose, S.; Shi, Y. J.; Han, G. C.; Chen, K.; Xin, J. M.; Liu, K.; Chen, Z. Y.; Xie, Z. Q. et al. High-performance fluorinated fused-ring electron acceptor with 3D stacking and exciton/charge transport. Adv. Mater. 2020, 32, 2000645.

[35]

Schilinsky, P.; Waldauf, C.; Brabec, C. J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl. Phys. Lett. 2002, 81, 3885–3887.

[36]

Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.

[37]
Meng, Y.; Wu, J. N.; Guo, X.; Su, W. Y.; Zhu, L.; Fang, J.; Zhang, Z. G.; Liu, F.; Zhang, M. J.; Russell, T. P. et al. 11.2% efficiency all-polymer solar cells with high open-circuit voltage. Sci. China Chem. 2019 , 62, 845–850.
DOI
[38]

Liao, Q.; Kang, Q.; Yang, Y.; An, C. B.; Xu, B. W.; Hou, J. H. Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells. Adv. Mater. 2020, 32, 1906557.

[39]

Yuan, Y. X.; Wu, F.; Chen, G. H.; Bai, Y.; Wu, C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. J. Energy Chem. 2019, 37, 197–203.

File
12274_2024_6482_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2023
Revised: 13 December 2023
Accepted: 11 January 2024
Published: 06 February 2024
Issue date: March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22105189).

Return