Journal Home > Online First

Electrocatalytic nitrate (NO3) reduction to ammonia (NH3) offers a viable approach for sustainable NH3 production and environmental denitrification. Copper (Cu) possesses a distinctive electronic structure, which can augment the reaction kinetics of NO3 and impede hydrogen evolution reaction (HER), rendering it a promising contender for the electrosynthesis of NH3 from NO3. Nevertheless, the role of Cu2O in copper-based catalysts still requires further investigation for a more comprehensive understanding. Herein, the Cu2O/Cu(OH)2 heterostructures are successfully fabricated through liquid laser irradiation using CuO nanoparticles as a precursor. Experimental and theoretical researches reveal that Cu2O/Cu(OH)2 heterostructure exhibits enhanced electrocatalytic performance for NO3 to NH3 because Cu(OH)2 promotes electron transfer and reduces the valence state of Cu active site in Cu2O. At −0.6 V (vs. reversible hydrogen electrode (RHE)), the NH3 yield reaches its maximum at 1630.66 ± 29.72 μg·h−1·mgcat−1, while the maximum of Faraday efficiency (FE) is 76.95% ± 5.51%. This study expands the technical scope of copper-based catalyst preparation and enhances the understanding of the electrocatalytic mechanism of NO3 to NH3.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting electrocatalytic nitrate reduction to ammonia via Cu2O/Cu(OH)2 heterostructures promoting electron transfer

Show Author's information Jing Geng1,2( )Sihan Ji3
Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China
Anhui Province Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230601, China
School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China

Abstract

Electrocatalytic nitrate (NO3) reduction to ammonia (NH3) offers a viable approach for sustainable NH3 production and environmental denitrification. Copper (Cu) possesses a distinctive electronic structure, which can augment the reaction kinetics of NO3 and impede hydrogen evolution reaction (HER), rendering it a promising contender for the electrosynthesis of NH3 from NO3. Nevertheless, the role of Cu2O in copper-based catalysts still requires further investigation for a more comprehensive understanding. Herein, the Cu2O/Cu(OH)2 heterostructures are successfully fabricated through liquid laser irradiation using CuO nanoparticles as a precursor. Experimental and theoretical researches reveal that Cu2O/Cu(OH)2 heterostructure exhibits enhanced electrocatalytic performance for NO3 to NH3 because Cu(OH)2 promotes electron transfer and reduces the valence state of Cu active site in Cu2O. At −0.6 V (vs. reversible hydrogen electrode (RHE)), the NH3 yield reaches its maximum at 1630.66 ± 29.72 μg·h−1·mgcat−1, while the maximum of Faraday efficiency (FE) is 76.95% ± 5.51%. This study expands the technical scope of copper-based catalyst preparation and enhances the understanding of the electrocatalytic mechanism of NO3 to NH3.

Keywords: electrocatalysts, ammonia synthesis, electron transfer, nitrate, Cu2O/Cu(OH)2 heterostructures

References(55)

[1]

Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.

[2]

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

[3]

Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

[4]

Wu, L. M.; Feng, J. Q.; Zhang, L. B.; Jia, S. H.; Song, X. N.; Zhu, Q. G.; Kang, X. C.; Xing, X. Q.; Sun, X. F.; Han, B. X. Boosting electrocatalytic nitrate-to-ammonia via tuning of n-intermediate adsorption on a Zn-Cu catalyst. Angew. Chem. 2023, 135, e202307952.

[5]

Wang, J.; Cai, C.; Wang, Y. A.; Yang, X. M.; Wu, D. J.; Zhu, Y. M.; Li, M. H.; Gu, M.; Shao, M. H. Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoO x nanosheets. ACS Catal. 2021, 11, 15135–15140.

[6]

Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.

[7]
Wang, F. Z.; Xiang, J. Q.; Zhang, G. K.; Chen, K.; Chu, K. Single-atom Co alloyed Ru for electrocatalytic nitrite reduction to ammonia. Nano Res., in press, https://doi.org/10.1007/s12274-023-6261-2.
DOI
[8]

Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

[9]

Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

[10]

Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

[11]

Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.

[12]

Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.

[13]

Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.

[14]

Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Selective nitrate-to-ammonia transformation on surface defects of titanium dioxide photocatalysts. ACS Catal. 2017, 7, 3713–3720.

[15]
Yang, M. S.; Wei, T. R.; He, J.; Liu, Q.; Feng, L. G.; Li, H. Y.; Luo, J.; Liu, X. J. Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Res., in press, https://doi.org/10.1007/s12274-023-5997-z.
DOI
[16]

Wang, Y. T.; Yu, Y. F.; Jia, R. R.; Zhang, C.; Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev. 2019, 6, 730–738.

[17]

Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

[18]

Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B: Environ. 2017, 207, 42–59.

[19]

Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B: Environ. 2018, 236, 546–568.

[20]
Liu, X. W.; Liu, C. Z.; He, X.; Cai, Z. W.; Dong, K.; Li, J.; Fan, X. Y.; Xie, T.; Yang, X. Y.; Luo, Y. L. et al. Fe-doped Co3O4 nanowire strutted 3D pinewood-derived carbon: A highly selective electrocatalyst for ammonia production via nitrate reduction. Nano Res., in press, https://doi.org/10.1007/s12274-023-6204-y.
DOI
[21]

Xu, H. W.; Xu, H.; Chen, Z. H.; Ran, X. Q.; Fan, J. W.; Luo, W.; Bian, Z. F.; Zhang, W. X.; Yang, J. P. Bimetallic PdCu nanocrystals immobilized by nitrogen-containing ordered mesoporous carbon for electrocatalytic denitrification. ACS Appl. Mater. Interfaces 2019, 11, 3861–3868.

[22]

Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.

[23]

Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.

[24]

Huo, X. C.; Van Hoomissen, D. J.; Liu, J. Y.; Vyas, S.; Strathmann, T. J. Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts. Appl. Catal. B: Environ. 2017, 211, 188–198.

[25]

Guo, S. J.; Heck, K.; Kasiraju, S.; Qian, H. F.; Zhao, Z.; Grabow, L. C.; Miller, J. T.; Wong, M. S. Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts. ACS Catal. 2018, 8, 503–515.

[26]

Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res. 2021, 14, 2711–2716.

[27]

Zhu, T. H.; Chen, Q. S.; Liao, P.; Duan, W. J.; Liang, S.; Yan, Z.; Feng, C. H. Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 2020, 16, 2004526.

[28]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

[29]

Wang, X. H.; Wang, Z. M.; Hong, Q. L.; Zhang, Z. N.; Shi, F.; Li, D. S.; Li, S. N.; Chen, Y. Oxygen-vacancy-rich Cu2O hollow nanocubes for nitrate electroreduction reaction to ammonia in a neutral electrolyte. Inorg. Chem. 2022, 61, 15678–15685.

[30]

Shen, Z. R.; Yan, J. B.; Wang, M.; Xing, L. D.; Huang, B. J.; Zhou, H. Y.; Li, W. B.; Chen, L. S.; Shi, J. L. Cu/Cu+ synergetic effect in Cu2O/Cu/CF electrocatalysts for efficient nitrate reduction to ammonia. ACS Sustain. Chem. Eng. 2023, 11, 9433–9441.

[31]

Jiang, H. F.; Chen, G. F.; Savateev, O.; Xue, J.; Ding, L. X.; Liang, Z. X.; Antonietti, M.; Wang, H. H. Enabled efficient ammonia synthesis and energy supply in a zinc-nitrate battery system by separating nitrate reduction process into two stages. Angew. Chem., Int. Ed. 2023, 62, e202218717.

[32]

Wang, C. C.; Ye, F.; Shen, J. H.; Xue, K. H.; Zhu, Y. H.; Li, C. Z. In situ loading of Cu2O active sites on island-like copper for efficient electrochemical reduction of nitrate to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 6680–6688.

[33]

Gong, Z. H.; Zhong, W. Y.; He, Z. Y.; Liu, Q. Y.; Chen, H. J.; Zhou, D.; Zhang, N.; Kang, X. W.; Chen, Y. Regulating surface oxygen species on copper(I) oxides via plasma treatment for effective reduction of nitrate to ammonia. Appl. Catal. B: Environ. 2022, 305, 121021.

[34]

Geng, J.; Ji, S. H.; Xu, H.; Zhao, C. J.; Zhang, S. B.; Zhang, H. M. Electrochemical reduction of nitrate to ammonia in a fluidized electrocatalysis system with oxygen vacancy-rich CuO x nanoparticles. Inorg. Chem. Front. 2021, 8, 5209–5213.

[35]

Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution. Phys. Chem. Chem. Phys. 2013, 15, 3027–3046.

[36]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[37]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[38]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[39]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[40]

Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985.

[41]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[42]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[43]

Li, H. H.; Wu, Y.; Li, C.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Jiang, Q.; Sun, C. Q.; Xu, S. Q. Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 251, 305–312.

[44]

Akhavan, O.; Azimirad, R.; Safa, S.; Hasani, E. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem. 2011, 21, 9634–9640.

[45]

Choi, D.; Jang, D. J. Facile fabrication of CuO/Cu2O composites with high catalytic performances. New J. Chem. 2017, 41, 2964–2972.

[46]

Zuo, Z. J.; Li, J.; Han, P. D.; Huang, W. XPS and DFT studies on the autoxidation process of Cu sheet at room temperature. J. Phys. Chem. C 2014, 118, 20332–20345.

[47]

Zhang, H.; Gu, X. J.; Liu, P. L.; Song, J.; Cheng, J.; Su, H. Q. Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride. J. Mater. Chem. A 2017, 5, 2288–2296.

[48]

Wang, R.; Sui, Y.; Yang, F.; Qi, J. Q.; Wei, F. X.; He, Y. Z.; Meng, Q. K.; Sun, Z. Synthesis of Cu2O by oxidation-assisted dealloying method for flexible all-solid-state asymmetric supercapacitors. J. Mater. Sci.: Mater. Electron. 2018, 29, 2080–2090.

[49]

Pan, Y. L.; Xu, X. M.; Zhong, Y. J.; Ge, L.; Chen, Y. B.; Veder, J. P. M.; Guan, D. Q.; O’Hayre, R.; Li, M. R.; Wang, G. X. et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002.

[50]

Reyter, D.; Bélanger, D.; Roué, L. Study of the electroreduction of nitrate on copper in alkaline solution. Electrochim. Acta 2008, 53, 5977–5984.

[51]

Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 2017, 227, 77–84.

[52]

Fu, X. B.; Zhao, X. G.; Hu, X. B.; He, K.; Yu, Y. N.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R. et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl. Mater. Today 2020, 19, 100620.

[53]

Han, S. H.; Li, H. J.; Li, T. L.; Chen, F. P.; Yang, R.; Yu, Y. F.; Zhang, B. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 2023, 6, 402–414.

[54]

Wen, W. D.; Yan, P.; Sun, W. P.; Zhou, Y. T.; Yu, X. Y. Metastable phase Cu with optimized local electronic state for efficient electrocatalytic production of ammonia from nitrate. Adv. Funct. Mater. 2023, 33, 2212236.

[55]

Gong, Z. H.; Xiang, X. P.; Zhong, W. Y.; Jia, C. H.; Chen, P. Y.; Zhang, N.; Zhao, S. J.; Liu, W. Z.; Chen, Y.; Lin, Z. Modulating metal–nitrogen coupling in anti-perovskite nitride via cation doping for efficient reduction of nitrate to ammonia. Angew. Chem. 2023, 135, e202308775.

File
6480_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 December 2023
Revised: 30 December 2023
Accepted: 09 January 2024
Published: 08 February 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by Scientific Research Project in Anhui Jianzhu University (No. 2023QDZ04).

Return