AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heterostructure Cu3P-Ni2P/CP catalyst assembled membrane electrode for high-efficiency electrocatalytic nitrate to ammonia

Meng Jin1,2,§Jiafang Liu1,2,§Xian Zhang3( )Shengbo Zhang1,2Wenyi Li1,2Dianding Sun1,2Yunxia Zhang1,2Guozhong Wang1,2Haimin Zhang1,2( )
Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
University of Science and Technology of China, Hefei 230026, China
Anhui Contango New Energy Technology Co., Ltd., Hefei 230031, China

§ Meng Jin and Jiafang Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Heterostructure copper-nickel phosphide electrocatalysts were successfully fabricated via a simple vapor-phase hydrothermal method, as the electrocatalysis exhibited outstanding electrocatalytic nitrite to ammonia performance utilizing a membrane-electrode-assemblies (MEA) system.

Abstract

Electrochemical nitrate reduction reaction (NO3RR) is a promising means for generating the energy carrier ammonia. Herein, we report the synthesis of heterostructure copper-nickel phosphide electrocatalysts via a simple vapor-phase hydrothermal method. The resultant catalysts were evaluated for electrocatalytic nitrate reduction to ammonia (NH3) in three-type electrochemical reactors. In detail, the regulation mechanism of the heterogeneous Cu3P-Ni2P/CP-x for NO3RR performance was systematically studied through the H-type cell, rotating disk electrode setup, and membrane-electrode-assemblies (MEA) electrolyzer. As a result, the Cu3P-Ni2P/CP-0.5 displays the practicability in an MEA system with an anion exchange membrane, affording the largest ammonia yield rate (RNH3) of 1.9 mmol·h−1·cm−2, exceeding most of the electrocatalytic nitrate reduction electrocatalysts reported to date. The theoretical calculations and in-situ spectroscopy characterizations uncover that the formed heterointerface in Cu3P-Ni2P/CP is beneficial for promoting nitrate adsorption, activation, and conversion to ammonia through the successive hydrodeoxygenation pathway.

Electronic Supplementary Material

Download File(s)
12274_2024_6474_MOESM1_ESM.pdf (3.3 MB)

References

[1]

Liu, Y. T.; Qiu, W. X.; Wang, P. F.; Li, R.; Liu, K.; Omer, K. M.; Jin, Z. Y.; Li, P. P. Pyridine-N-rich Cu single-atom catalyst boosts nitrate electroreduction to ammonia. Appl. Catal. B: Environ. 2024, 340, 123228.

[2]

Gong, Z. H.; Xiang, X. P.; Zhong, W. Y.; Jia, C. H.; Chen, P. Y.; Zhang, N.; Zhao, S. J.; Liu, W. Z.; Chen, Y.; Lin, Z. Modulating metal-nitrogen coupling in anti-perovskite nitride via cation doping for efficient reduction of nitrate to ammonia. Angew. Chem., Int. Ed. 2023, 135, e202308775.

[3]

Zhang, X. R.; Lyu, Y.; Zhou, H. J.; Zheng, J. Y.; Huang, A. B.; Ding, J. J.; Xie, C.; De Marco, R.; Tsud, N.; Kalinovych, V. et al. Photoelectrochemical N2-to-NH3 fixation with high efficiency and rates via optimized Si-based system at positive potential versus Li0/+. Adv. Mater. 2023, 35, 2211894.

[4]

Murphy, E.; Liu, Y. C.; Matanovic, I.; Rüscher, M.; Huang, Y.; Ly, A.; Guo, S. Y.; Zang, W. J.; Yan, X. X.; Martini, A. et al. Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nat. Commun. 2023, 14, 4554.

[5]

Jiang, H. F.; Chen, G. F.; Savateev, O.; Xue, J.; Ding, L. X.; Liang, Z. X.; Antonietti, M.; Wang, H. H. Enabled efficient ammonia synthesis and energy supply in a zinc-nitrate battery system by separating nitrate reduction process into two stages. Angew. Chem., Int. Ed. 2023, 62, e202218717.

[6]
Yuan, J.; Feng, W. H.; Zhang, Y. F.; Xiao, J. Y.; Zhang, X. Y.; Wu, Y. T.; Ni, W. K.; Huang, H. W.; Dai, W. X. Unraveling synergistic effect of defects and piezoelectric field in breakthrough piezo-photocatalytic N2 reduction. Adv. Mater., in press, DOI: 10.1002/adma.202303845.
[7]

Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

[8]

Zhao, R. D.; Yan, Q. Y.; Yu, L. H.; Yan, T.; Zhu, X. Y.; Zhao, Z. Y.; Liu, L.; Xi, J. Y. A Bi-Co corridor construction effectively improving the selectivity of electrocatalytic nitrate reduction toward ammonia by nearly 100%. Adv. Mater. 2023, 35, 2306633.

[9]

Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.

[10]

Chen, W. D.; Yang, X. Y.; Chen, Z. D.; Ou, Z. J.; Hu, J. T.; Xu, Y.; Li, Y. L.; Ren, X. Z.; Ye, S. H.; Qiu, J. S. et al. Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion. Adv. Funct. Mater. 2023, 33, 2300512.

[11]

Gu, Z. X.; Zhang, Y. C.; Wei, X. L.; Duan, Z. Y.; Gong, Q. Y.; Luo, K. Intermediates regulation via electron-deficient Cu sites for selective nitrate-to-ammonia electroreduction. Adv. Mater. 2023, 35, 2303107.

[12]

Yao, F. B.; Jia, M. C.; Yang, Q.; Chen, F.; Zhong, Y.; Chen, S. J.; He, L.; Pi, Z. J.; Hou, K. J.; Wang, D. B. et al. Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application. Water Res. 2021, 193, 116881.

[13]

Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

[14]

Xue, Z. H.; Shen, H. C.; Chen, P. C.; Pan, G. X.; Zhang, W. W.; Zhang, W. M.; Zhang, S. N.; Li, X. H.; Yavuz, C. T. Boronization of nickel foam for sustainable electrochemical reduction of nitrate to ammonia. ACS Energy Lett. 2023, 8, 3843–3851.

[15]

Ren, Z. H.; Shi, K. G.; Feng, X. F. Elucidating the intrinsic activity and selectivity of Cu for nitrate electroreduction. ACS Energy Lett. 2023, 8, 3658–3665.

[16]

Lv, C. D.; Liu, J. W.; Lee, C.; Zhu, Q.; Xu, J. W.; Pan, H. G.; Xue, C.; Yan, Q. Y. Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 2022, 16, 15512–15527.

[17]

Wang, J.; Feng, T.; Chen, J. X.; Ramalingam, V.; Li, Z. X.; Kabtamu, D. M.; He, J. H.; Fang, X. S. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 2021, 86, 106088.

[18]

Wang, J.; Feng, T.; Chen, J. X.; He, J. H.; Fang, X. S. Flexible 2D Cu metal: Organic framework@mxene film electrode with excellent durability for highly selective electrocatalytic NH3 synthesis. Research 2022, 2022, 9837012.

[19]

Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933–22939.

[20]

Bu, Y. G.; Wang, C.; Zhang, W. K.; Yang, X. H.; Ding, J.; Gao, G. D. Electrical pulse-driven periodic self-repair of Cu-Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew. Chem., Int. Ed. 2023, 62, e202217337.

[21]

Xu, L. H.; Liu, W. P.; Liu, K. Single atom environmental catalysis: Influence of supports and coordination environments. Adv. Funct. Mater. 2023, 33, 2304468.

[22]

Wang, S. W.; Song, C. F.; Cai, Y. J.; Li, Y. F.; Jiang, P. K.; Li, H.; Yu, B.; Ma, T. Y. Interfacial polarization triggered by covalent-bonded MXene and black phosphorus for enhanced electrochemical nitrate to ammonia conversion. Adv. Energy Mater. 2023, 13, 2301136.

[23]

Zhang, G. K.; Wang, F. Z.; Chen, K.; Kang, J. L.; Chu, K. Atomically dispersed Sn confined in FeS2 for nitrate-to-ammonia electroreduction. Adv. Funct. Mater. 2024, 34, 2305372.

[24]

Zhou, Y. Y.; Duan, R. Z.; Li, H.; Zhao, M.; Ding, C. M.; Li, C. Boosting electrocatalytic nitrate reduction to ammonia via promoting water dissociation. ACS Catal. 2023, 13, 10846–10854.

[25]

Zhao, G. Q.; Jiang, Y. Z.; Dou, S. X.; Sun, W. P.; Pan, H. G. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 2021, 66, 85–96.

[26]

Tan, Z. X.; Du, F.; Tong, M. Q.; Hu, J. D.; Zhang, N.; Huang, S. Y.; Guo, C. X. Heterostructured CoS2/MoS2 with a rich active site for an efficient electrochemical nitrate reduction reaction to ammonia. Energy Fuels 2023, 37, 18085–18092.

[27]

Zhao, X. E.; Li, Z. R.; Gao, S.; Sun, X. P.; Zhu, S. Y. CoS2@TiO2 nanoarray: A heterostructured electrocatalyst for high-efficiency nitrate reduction to ammonia. Chem. Commun. 2022, 58, 12995–12998.

[28]

Liu, Y.; Yao, X. M.; Liu, X.; Liu, Z. L.; Wang, Y. Q. Cu2+1O/Ag heterostructure for boosting the electrocatalytic nitrate reduction to ammonia performance. Inorg. Chem. 2023, 62, 7525–7532.

[29]

Paul, S.; Sarkar, S.; Adalder, A.; Kapse, S.; Thapa, R.; Ghorai, U. K. Strengthening the metal center of Co–N4 active sites in a 1D-2D heterostructure for nitrate and nitrogen reduction reaction to ammonia. ACS Sustainable Chem. Eng. 2023, 11, 6191–6200.

[30]

Zheng, L. X.; Ye, W. Q.; Zhao, Y. J.; Lv, Z. Q.; Shi, X. W.; Wu, Q.; Fang, X. S.; Zheng, H. J. Defect-induced atomic arrangement in CoFe bimetallic heterostructures with boosted oxygen evolution activity. Small 2023, 19, 2205092.

[31]

Zhou, P.; Tao, L.; Tao, S. S.; Li, Y. C.; Wang, D. D.; Dong, X. W.; Frauenheim, T.; Fu, X. Z.; Lv, X. S.; Wang, S. Y. Construction of nickel-based dual heterointerfaces towards accelerated alkaline hydrogen evolution via boosting multi-step elementary reaction. Adv. Funct. Mater. 2021, 31, 2104827.

[32]

Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.

[33]

Huang, C. J.; Xu, H. M.; Shuai, T. Y.; Zhan, Q. N.; Zhang, Z. J.; Li, G. R. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B Environ. 2023, 325, 122313.

[34]

Zeng, L. Y.; Sun, K. A.; Wang, X. B.; Liu, Y. Q.; Pan, Y.; Liu, Z.; Cao, D. W.; Song, Y.; Liu, S. H.; Liu, C. G. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 2018, 51, 26–36.

[35]

Liu, Y. Q.; Zhang, Z. H.; Zhang, L.; Xia, Y. G.; Wang, H. Q.; Liu, H.; Ge, S. G.; Yu, J. H. Manipulating the d-band centers of transition metal phosphides through dual metal doping towards robust overall water splitting. J. Mater. Chem. A 2022, 10, 22125–22134.

[36]

Ren, T. L.; Yu, Z.; Yu, H. J.; Deng, K.; Wang, Z. Q.; Li, X. N.; Wang, H. J.; Wang, L.; Xu, Y. Interfacial polarization in metal–organic framework reconstructed Cu/Pd/CuO x multi-phase heterostructures for electrocatalytic nitrate reduction to ammonia. Appl. Catal. B Environ. 2022, 318, 121805.

[37]

Ji, X. Y.; Sun, K.; Liu, Z. K.; Liu, X. H.; Dong, W. K.; Zuo, X. T.; Shao, R. W.; Tao, J. Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. NanoMicro Lett. 2023, 15, 110.

[38]

Xu, Z. A.; Wan, L.; Liao, Y. W.; Pang, M. B.; Xu, Q.; Wang, P. C.; Wang, B. G. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA·cm−2. Nat. Commun. 2023, 14, 1619.

[39]

Zhang, X.; Han, M. M.; Liu, G. Q.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. Appl. Catal. B Environ. 2019, 244, 899–908.

[40]

Jin, M.; Zhang, X.; Han, M. M.; Wang, H. J.; Wang, G. Z.; Zhang, H. M. Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. J. Mater. Chem. A 2020, 8, 5936–5942.

[41]

Wouters, B.; Sheng, X.; Boschin, A.; Breugelmans, T.; Ahlberg, E.; Vankelecom, I. F. J.; Pescarmona, P. P.; Hubin, A. The electrocatalytic behaviour of Pt and Cu nanoparticles supported on carbon nanotubes for the nitrobenzene reduction in ethanol. Electrochim. Acta 2013, 111, 405–410.

[42]

Daems, N.; Wouters, J.; Van Goethem, C.; Baert, K.; Poleunis, C.; Delcorte, A.; Hubin, A.; Vankelecom, I. F. J.; Pescarmona, P. P. Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals. Appl. Catal. B Environ. 2018, 226, 509–522.

[43]

Wang, C. H.; Liu, Z. Y.; Hu, T.; Li, J. S.; Dong, L. Q.; Du, F.; Li, C. M.; Guo, C. X. Metasequoia-like nanocrystal of iron-doped copper for efficient electrocatalytic nitrate reduction into ammonia in neutral media. ChemSusChem 2021, 14, 1825–1829.

[44]

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

[45]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[46]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[47]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[48]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[49]

Huang, Y. M.; Yang, R.; Wang, C. H.; Meng, N. N.; Shi, Y. M.; Yu, Y. F.; Zhang, B. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 2022, 7, 284–291.

[50]

Wu, L. B.; Yu, L.; Zhang, F. H.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.

[51]

Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Y. Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B Environ. 2020, 262, 118245.

[52]

Chen, J. Y.; Li, X.; Ma, B.; Zhao, X. D.; Chen, Y. T. Cu3P@Ni core-shell heterostructure with modulated electronic structure for highly efficient hydrogen evolution. Nano Res. 2022, 15, 2935–2942.

[53]

Gang, C.; Chen, J.; Li, X.; Ma, B.; Zhao, X.; Chen, Y. Cu3P@CoO core–shell heterostructure with synergistic effect for highly efficient hydrogen evolution. Nanoscale 2021, 13, 19430–19437.

[54]

Qin, X. Y.; Yan, B. Y.; Kim, D.; Teng, Z. S.; Chen, T. Y.; Choi, J.; Xu, L.; Piao, Y. Interfacial engineering and hydrophilic/aerophobic tuning of Sn4P3/Co2P heterojunction nanoarrays for high-efficiency fully reversible water electrolysis. Appl. Catal. B Environ. 2022, 304, 120923.

[55]

Yang, B. P.; Zhou, Y. L.; Huang, Z. C.; Mei, B. B.; Kang, Q.; Chen, G.; Liu, X. H.; Jiang, Z.; Liu, M.; Zhang, N. Electron-deficient cobalt nanocrystals for promoted nitrate electrocatalytic reduction to synthesize ammonia. Nano Energy 2023, 117, 108901.

[56]

Guharoy, U.; Reina, T. R.; Olsson, E.; Gu, S.; Cai, Q. Theoretical insights of Ni2P (0001) surface toward its potential applicability in CO2 conversion via dry reforming of methane. ACS Catal. 2019, 9, 3487–3497.

[57]

Jin, M.; Liu, Y. Y.; Zhang, X.; Wang, J. L.; Zhang, S. B.; Wang, G. Z.; Zhang, Y. X.; Yin, H. J.; Zhang, H. M.; Zhao, H. J. Selective electrocatalytic hydrogenation of nitrobenzene over copper-platinum alloying catalysts: Experimental and theoretical studies. Appl. Catal. B Environ. 2021, 298, 120545.

[58]

Yang, Y.; Li, F. W. Reactor design for electrochemical CO2 conversion toward large-scale applications. Curr. Opin. Green Sustain. Chem. 2021, 27, 100419.

[59]

Gao, D. F.; Wei, P. F.; Li, H. F.; Lin, L.; Wang, G. X.; Bao, X. H. Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2009021.

[60]

Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 2020, 19, 1140–1150.

[61]

Weng, L. C.; Bell, A. T.; Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: A modeling study. Energy Environ. Sci. 2019, 12, 1950–1968.

[62]

Higgins, D.; Hahn, C.; Xiang, C. X.; Jaramillo, T. F.; Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: A new paradigm. ACS Energy Lett. 2019, 4, 317–324.

[63]

Gabardo, C. M.; O’Brien, C. P.; Edwards, J. P.; McCallum, C.; Xu, Y.; Dinh, C. T.; Li, J.; Sargent, E. H.; Sinton, D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 2019, 3, 2777–2791.

[64]

Kutz, R. B.; Chen, Q. M.; Yang, H. Z.; Sajjad, S. D.; Liu, Z. C.; Masel, I. R. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 2017, 5, 929–936.

[65]

Shao, Q.; Wang, P. T.; Huang, X. Q. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 2019, 29, 1806419.

[66]

Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.

[67]

Chen, Z. W.; Chen, L. X.; Wen, Z.; Jiang, Q. Understanding electro-catalysis by using density functional theory. Phys. Chem. Chem. Phys. 2019, 21, 23782–23802.

[68]

Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.

[69]

Wang, Y. L.; Yin, H. B.; Dong, F.; Zhao, X. G.; Qu, Y. K.; Wang, L. X.; Peng, Y.; Wang, D. S.; Fang, W.; Li, J. H. N-coordinated Cu-Ni dual-single-atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia. Small 2023, 19, 2207695.

[70]

Zhou, N.; Wang, Z.; Zhang, N.; Bao, D.; Zhong, H. X.; Zhang, X. B. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catal. 2023, 13, 7529–7537.

Nano Research
Pages 4872-4881
Cite this article:
Jin M, Liu J, Zhang X, et al. Heterostructure Cu3P-Ni2P/CP catalyst assembled membrane electrode for high-efficiency electrocatalytic nitrate to ammonia. Nano Research, 2024, 17(6): 4872-4881. https://doi.org/10.1007/s12274-024-6474-z
Topics:

866

Views

6

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 16 November 2023
Revised: 21 December 2023
Accepted: 06 January 2024
Published: 08 February 2024
© Tsinghua University Press 2024
Return