Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemical nitrate reduction reaction (NO3RR) is a promising means for generating the energy carrier ammonia. Herein, we report the synthesis of heterostructure copper-nickel phosphide electrocatalysts via a simple vapor-phase hydrothermal method. The resultant catalysts were evaluated for electrocatalytic nitrate reduction to ammonia (NH3) in three-type electrochemical reactors. In detail, the regulation mechanism of the heterogeneous Cu3P-Ni2P/CP-x for NO3RR performance was systematically studied through the H-type cell, rotating disk electrode setup, and membrane-electrode-assemblies (MEA) electrolyzer. As a result, the Cu3P-Ni2P/CP-0.5 displays the practicability in an MEA system with an anion exchange membrane, affording the largest ammonia yield rate (RNH3) of 1.9 mmol·h−1·cm−2, exceeding most of the electrocatalytic nitrate reduction electrocatalysts reported to date. The theoretical calculations and in-situ spectroscopy characterizations uncover that the formed heterointerface in Cu3P-Ni2P/CP is beneficial for promoting nitrate adsorption, activation, and conversion to ammonia through the successive hydrodeoxygenation pathway.
Liu, Y. T.; Qiu, W. X.; Wang, P. F.; Li, R.; Liu, K.; Omer, K. M.; Jin, Z. Y.; Li, P. P. Pyridine-N-rich Cu single-atom catalyst boosts nitrate electroreduction to ammonia. Appl. Catal. B: Environ. 2024, 340, 123228.
Gong, Z. H.; Xiang, X. P.; Zhong, W. Y.; Jia, C. H.; Chen, P. Y.; Zhang, N.; Zhao, S. J.; Liu, W. Z.; Chen, Y.; Lin, Z. Modulating metal-nitrogen coupling in anti-perovskite nitride via cation doping for efficient reduction of nitrate to ammonia. Angew. Chem., Int. Ed. 2023, 135, e202308775.
Zhang, X. R.; Lyu, Y.; Zhou, H. J.; Zheng, J. Y.; Huang, A. B.; Ding, J. J.; Xie, C.; De Marco, R.; Tsud, N.; Kalinovych, V. et al. Photoelectrochemical N2-to-NH3 fixation with high efficiency and rates via optimized Si-based system at positive potential versus Li0/+. Adv. Mater. 2023, 35, 2211894.
Murphy, E.; Liu, Y. C.; Matanovic, I.; Rüscher, M.; Huang, Y.; Ly, A.; Guo, S. Y.; Zang, W. J.; Yan, X. X.; Martini, A. et al. Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nat. Commun. 2023, 14, 4554.
Jiang, H. F.; Chen, G. F.; Savateev, O.; Xue, J.; Ding, L. X.; Liang, Z. X.; Antonietti, M.; Wang, H. H. Enabled efficient ammonia synthesis and energy supply in a zinc-nitrate battery system by separating nitrate reduction process into two stages. Angew. Chem., Int. Ed. 2023, 62, e202218717.
Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.
Zhao, R. D.; Yan, Q. Y.; Yu, L. H.; Yan, T.; Zhu, X. Y.; Zhao, Z. Y.; Liu, L.; Xi, J. Y. A Bi-Co corridor construction effectively improving the selectivity of electrocatalytic nitrate reduction toward ammonia by nearly 100%. Adv. Mater. 2023, 35, 2306633.
Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.
Chen, W. D.; Yang, X. Y.; Chen, Z. D.; Ou, Z. J.; Hu, J. T.; Xu, Y.; Li, Y. L.; Ren, X. Z.; Ye, S. H.; Qiu, J. S. et al. Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion. Adv. Funct. Mater. 2023, 33, 2300512.
Gu, Z. X.; Zhang, Y. C.; Wei, X. L.; Duan, Z. Y.; Gong, Q. Y.; Luo, K. Intermediates regulation via electron-deficient Cu sites for selective nitrate-to-ammonia electroreduction. Adv. Mater. 2023, 35, 2303107.
Yao, F. B.; Jia, M. C.; Yang, Q.; Chen, F.; Zhong, Y.; Chen, S. J.; He, L.; Pi, Z. J.; Hou, K. J.; Wang, D. B. et al. Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application. Water Res. 2021, 193, 116881.
Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.
Xue, Z. H.; Shen, H. C.; Chen, P. C.; Pan, G. X.; Zhang, W. W.; Zhang, W. M.; Zhang, S. N.; Li, X. H.; Yavuz, C. T. Boronization of nickel foam for sustainable electrochemical reduction of nitrate to ammonia. ACS Energy Lett. 2023, 8, 3843–3851.
Ren, Z. H.; Shi, K. G.; Feng, X. F. Elucidating the intrinsic activity and selectivity of Cu for nitrate electroreduction. ACS Energy Lett. 2023, 8, 3658–3665.
Lv, C. D.; Liu, J. W.; Lee, C.; Zhu, Q.; Xu, J. W.; Pan, H. G.; Xue, C.; Yan, Q. Y. Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 2022, 16, 15512–15527.
Wang, J.; Feng, T.; Chen, J. X.; Ramalingam, V.; Li, Z. X.; Kabtamu, D. M.; He, J. H.; Fang, X. S. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 2021, 86, 106088.
Wang, J.; Feng, T.; Chen, J. X.; He, J. H.; Fang, X. S. Flexible 2D Cu metal: Organic framework@mxene film electrode with excellent durability for highly selective electrocatalytic NH3 synthesis. Research 2022, 2022, 9837012.
Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933–22939.
Bu, Y. G.; Wang, C.; Zhang, W. K.; Yang, X. H.; Ding, J.; Gao, G. D. Electrical pulse-driven periodic self-repair of Cu-Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew. Chem., Int. Ed. 2023, 62, e202217337.
Xu, L. H.; Liu, W. P.; Liu, K. Single atom environmental catalysis: Influence of supports and coordination environments. Adv. Funct. Mater. 2023, 33, 2304468.
Wang, S. W.; Song, C. F.; Cai, Y. J.; Li, Y. F.; Jiang, P. K.; Li, H.; Yu, B.; Ma, T. Y. Interfacial polarization triggered by covalent-bonded MXene and black phosphorus for enhanced electrochemical nitrate to ammonia conversion. Adv. Energy Mater. 2023, 13, 2301136.
Zhang, G. K.; Wang, F. Z.; Chen, K.; Kang, J. L.; Chu, K. Atomically dispersed Sn confined in FeS2 for nitrate-to-ammonia electroreduction. Adv. Funct. Mater. 2024, 34, 2305372.
Zhou, Y. Y.; Duan, R. Z.; Li, H.; Zhao, M.; Ding, C. M.; Li, C. Boosting electrocatalytic nitrate reduction to ammonia via promoting water dissociation. ACS Catal. 2023, 13, 10846–10854.
Zhao, G. Q.; Jiang, Y. Z.; Dou, S. X.; Sun, W. P.; Pan, H. G. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 2021, 66, 85–96.
Tan, Z. X.; Du, F.; Tong, M. Q.; Hu, J. D.; Zhang, N.; Huang, S. Y.; Guo, C. X. Heterostructured CoS2/MoS2 with a rich active site for an efficient electrochemical nitrate reduction reaction to ammonia. Energy Fuels 2023, 37, 18085–18092.
Zhao, X. E.; Li, Z. R.; Gao, S.; Sun, X. P.; Zhu, S. Y. CoS2@TiO2 nanoarray: A heterostructured electrocatalyst for high-efficiency nitrate reduction to ammonia. Chem. Commun. 2022, 58, 12995–12998.
Liu, Y.; Yao, X. M.; Liu, X.; Liu, Z. L.; Wang, Y. Q. Cu2+1O/Ag heterostructure for boosting the electrocatalytic nitrate reduction to ammonia performance. Inorg. Chem. 2023, 62, 7525–7532.
Paul, S.; Sarkar, S.; Adalder, A.; Kapse, S.; Thapa, R.; Ghorai, U. K. Strengthening the metal center of Co–N4 active sites in a 1D-2D heterostructure for nitrate and nitrogen reduction reaction to ammonia. ACS Sustainable Chem. Eng. 2023, 11, 6191–6200.
Zheng, L. X.; Ye, W. Q.; Zhao, Y. J.; Lv, Z. Q.; Shi, X. W.; Wu, Q.; Fang, X. S.; Zheng, H. J. Defect-induced atomic arrangement in CoFe bimetallic heterostructures with boosted oxygen evolution activity. Small 2023, 19, 2205092.
Zhou, P.; Tao, L.; Tao, S. S.; Li, Y. C.; Wang, D. D.; Dong, X. W.; Frauenheim, T.; Fu, X. Z.; Lv, X. S.; Wang, S. Y. Construction of nickel-based dual heterointerfaces towards accelerated alkaline hydrogen evolution via boosting multi-step elementary reaction. Adv. Funct. Mater. 2021, 31, 2104827.
Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.
Huang, C. J.; Xu, H. M.; Shuai, T. Y.; Zhan, Q. N.; Zhang, Z. J.; Li, G. R. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B Environ. 2023, 325, 122313.
Zeng, L. Y.; Sun, K. A.; Wang, X. B.; Liu, Y. Q.; Pan, Y.; Liu, Z.; Cao, D. W.; Song, Y.; Liu, S. H.; Liu, C. G. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 2018, 51, 26–36.
Liu, Y. Q.; Zhang, Z. H.; Zhang, L.; Xia, Y. G.; Wang, H. Q.; Liu, H.; Ge, S. G.; Yu, J. H. Manipulating the d-band centers of transition metal phosphides through dual metal doping towards robust overall water splitting. J. Mater. Chem. A 2022, 10, 22125–22134.
Ren, T. L.; Yu, Z.; Yu, H. J.; Deng, K.; Wang, Z. Q.; Li, X. N.; Wang, H. J.; Wang, L.; Xu, Y. Interfacial polarization in metal–organic framework reconstructed Cu/Pd/CuO x multi-phase heterostructures for electrocatalytic nitrate reduction to ammonia. Appl. Catal. B Environ. 2022, 318, 121805.
Ji, X. Y.; Sun, K.; Liu, Z. K.; Liu, X. H.; Dong, W. K.; Zuo, X. T.; Shao, R. W.; Tao, J. Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. NanoMicro Lett. 2023, 15, 110.
Xu, Z. A.; Wan, L.; Liao, Y. W.; Pang, M. B.; Xu, Q.; Wang, P. C.; Wang, B. G. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA·cm−2. Nat. Commun. 2023, 14, 1619.
Zhang, X.; Han, M. M.; Liu, G. Q.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. Appl. Catal. B Environ. 2019, 244, 899–908.
Jin, M.; Zhang, X.; Han, M. M.; Wang, H. J.; Wang, G. Z.; Zhang, H. M. Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. J. Mater. Chem. A 2020, 8, 5936–5942.
Wouters, B.; Sheng, X.; Boschin, A.; Breugelmans, T.; Ahlberg, E.; Vankelecom, I. F. J.; Pescarmona, P. P.; Hubin, A. The electrocatalytic behaviour of Pt and Cu nanoparticles supported on carbon nanotubes for the nitrobenzene reduction in ethanol. Electrochim. Acta 2013, 111, 405–410.
Daems, N.; Wouters, J.; Van Goethem, C.; Baert, K.; Poleunis, C.; Delcorte, A.; Hubin, A.; Vankelecom, I. F. J.; Pescarmona, P. P. Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals. Appl. Catal. B Environ. 2018, 226, 509–522.
Wang, C. H.; Liu, Z. Y.; Hu, T.; Li, J. S.; Dong, L. Q.; Du, F.; Li, C. M.; Guo, C. X. Metasequoia-like nanocrystal of iron-doped copper for efficient electrocatalytic nitrate reduction into ammonia in neutral media. ChemSusChem 2021, 14, 1825–1829.
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
Huang, Y. M.; Yang, R.; Wang, C. H.; Meng, N. N.; Shi, Y. M.; Yu, Y. F.; Zhang, B. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 2022, 7, 284–291.
Wu, L. B.; Yu, L.; Zhang, F. H.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.
Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Y. Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B Environ. 2020, 262, 118245.
Chen, J. Y.; Li, X.; Ma, B.; Zhao, X. D.; Chen, Y. T. Cu3P@Ni core-shell heterostructure with modulated electronic structure for highly efficient hydrogen evolution. Nano Res. 2022, 15, 2935–2942.
Gang, C.; Chen, J.; Li, X.; Ma, B.; Zhao, X.; Chen, Y. Cu3P@CoO core–shell heterostructure with synergistic effect for highly efficient hydrogen evolution. Nanoscale 2021, 13, 19430–19437.
Qin, X. Y.; Yan, B. Y.; Kim, D.; Teng, Z. S.; Chen, T. Y.; Choi, J.; Xu, L.; Piao, Y. Interfacial engineering and hydrophilic/aerophobic tuning of Sn4P3/Co2P heterojunction nanoarrays for high-efficiency fully reversible water electrolysis. Appl. Catal. B Environ. 2022, 304, 120923.
Yang, B. P.; Zhou, Y. L.; Huang, Z. C.; Mei, B. B.; Kang, Q.; Chen, G.; Liu, X. H.; Jiang, Z.; Liu, M.; Zhang, N. Electron-deficient cobalt nanocrystals for promoted nitrate electrocatalytic reduction to synthesize ammonia. Nano Energy 2023, 117, 108901.
Guharoy, U.; Reina, T. R.; Olsson, E.; Gu, S.; Cai, Q. Theoretical insights of Ni2P (0001) surface toward its potential applicability in CO2 conversion via dry reforming of methane. ACS Catal. 2019, 9, 3487–3497.
Jin, M.; Liu, Y. Y.; Zhang, X.; Wang, J. L.; Zhang, S. B.; Wang, G. Z.; Zhang, Y. X.; Yin, H. J.; Zhang, H. M.; Zhao, H. J. Selective electrocatalytic hydrogenation of nitrobenzene over copper-platinum alloying catalysts: Experimental and theoretical studies. Appl. Catal. B Environ. 2021, 298, 120545.
Yang, Y.; Li, F. W. Reactor design for electrochemical CO2 conversion toward large-scale applications. Curr. Opin. Green Sustain. Chem. 2021, 27, 100419.
Gao, D. F.; Wei, P. F.; Li, H. F.; Lin, L.; Wang, G. X.; Bao, X. H. Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2009021.
Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 2020, 19, 1140–1150.
Weng, L. C.; Bell, A. T.; Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: A modeling study. Energy Environ. Sci. 2019, 12, 1950–1968.
Higgins, D.; Hahn, C.; Xiang, C. X.; Jaramillo, T. F.; Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: A new paradigm. ACS Energy Lett. 2019, 4, 317–324.
Gabardo, C. M.; O’Brien, C. P.; Edwards, J. P.; McCallum, C.; Xu, Y.; Dinh, C. T.; Li, J.; Sargent, E. H.; Sinton, D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 2019, 3, 2777–2791.
Kutz, R. B.; Chen, Q. M.; Yang, H. Z.; Sajjad, S. D.; Liu, Z. C.; Masel, I. R. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 2017, 5, 929–936.
Shao, Q.; Wang, P. T.; Huang, X. Q. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 2019, 29, 1806419.
Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.
Chen, Z. W.; Chen, L. X.; Wen, Z.; Jiang, Q. Understanding electro-catalysis by using density functional theory. Phys. Chem. Chem. Phys. 2019, 21, 23782–23802.
Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.
Wang, Y. L.; Yin, H. B.; Dong, F.; Zhao, X. G.; Qu, Y. K.; Wang, L. X.; Peng, Y.; Wang, D. S.; Fang, W.; Li, J. H. N-coordinated Cu-Ni dual-single-atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia. Small 2023, 19, 2207695.
Zhou, N.; Wang, Z.; Zhang, N.; Bao, D.; Zhong, H. X.; Zhang, X. B. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catal. 2023, 13, 7529–7537.