Journal Home > Online First

While the past years have witnessed great achievement in pseudocapacitors, the inauguration of electrode materials of high-performance still remains a formidable challenge. Moreover, the capacity and rate capability of the electrode depends largely on its electrical conductivity, which ensures fast charge transfer kinetics in both the grain bulk and grain boundaries. Here, nickel hydroxides with oxygen vacancies are facilely fabricated via a hydrothermal method. The active materials exhibit a high specific capacitance of 3250 F·g−1 and a high areal of capacitance of 14.98 F·cm−2 at 4.6 mA·cm−2. The asymmetric supercapacitor device based on our material delivers a high energy density of ~ 71.6 Wh·kg−1 and a power density of ~ 17,300 W·kg−1 and could retain ~ 95% of their initial capacitance even after 30,000 cycles. In addition, the defect-rich hydroxides demonstrate higher electrical conductivity as well as dielectric constant, which is responsible for the superior pseudocapacitive performance. Our new scientific strategy in terms of taking the advantages of oxygen vacancies might open up new opportunities for qualified pseudocapacitive materials of overall high performances not only for nickel hydroxides but also for other metal hydroxides/oxides.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Defect engineered nickel hydroxide nanosheets for advanced pseudocapacitor electrodes

Show Author's information Yaohang Gu1,3,4( )Yuxuan Zhang1Xuanyu Wang1Ateer Bao1Bo Ni1Haijun Pan1,3,4( )Xiaoyan Zhang1,3,4Xiwei Qi2( )
School of Materials Science and Engineering, Northeastern University, Shenyang 110189, China
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

Abstract

While the past years have witnessed great achievement in pseudocapacitors, the inauguration of electrode materials of high-performance still remains a formidable challenge. Moreover, the capacity and rate capability of the electrode depends largely on its electrical conductivity, which ensures fast charge transfer kinetics in both the grain bulk and grain boundaries. Here, nickel hydroxides with oxygen vacancies are facilely fabricated via a hydrothermal method. The active materials exhibit a high specific capacitance of 3250 F·g−1 and a high areal of capacitance of 14.98 F·cm−2 at 4.6 mA·cm−2. The asymmetric supercapacitor device based on our material delivers a high energy density of ~ 71.6 Wh·kg−1 and a power density of ~ 17,300 W·kg−1 and could retain ~ 95% of their initial capacitance even after 30,000 cycles. In addition, the defect-rich hydroxides demonstrate higher electrical conductivity as well as dielectric constant, which is responsible for the superior pseudocapacitive performance. Our new scientific strategy in terms of taking the advantages of oxygen vacancies might open up new opportunities for qualified pseudocapacitive materials of overall high performances not only for nickel hydroxides but also for other metal hydroxides/oxides.

Keywords: electrical conductivity, oxygen vacancies, pseudocapacitors, nickel hydroxides

References(44)

[1]

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin. Science 2014, 343, 1210–1211.

[2]

Yan, J.; Li, S. H.; Lan, B. B.; Wu, Y. C.; Lee, P. S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. Mater. 2020, 30, 1902564.

[3]

Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y.; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854.

[4]

Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.

[5]

Zhang, J. H.; Zhang, G. X.; Zhou, T.; Sun, S. H. Recent developments of planar micro-supercapacitors: Fabrication, properties, and applications. Adv. Funct. Mater. 2020, 30, 1910000.

[6]

Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

[7]

Zhu, Q. C.; Zhao, D. Y.; Cheng, M. Y.; Zhou, J. Q.; Owusu, K. A.; Mai, L.; Yu, Y. A new view of supercapacitors: Integrated supercapacitors. Adv. Energy Mater. 2019, 9, 1901081.

[8]

Liang, G. J.; Li, X. L.; Wang, Y. B.; Yang, S.; Huang, Z. D.; Yang, Q.; Wang, D. H.; Dong, B. B.; Zhu, M. S.; Zhi, C. Y. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1, 9120002.

[9]

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

[10]

Liang, J.; Tian, B.; Li, S. Q.; Jiang, C. Z.; Wu, W. All-printed MnHCF-MnO x -based high-performance flexible supercapacitors. Adv. Energy Mater. 2020, 10, 2000022.

[11]

Gu, Y. H.; Lu, Z. Y.; Chang, Z.; Liu, J. F.; Lei, X. D.; Li, Y. P.; Sun, X. M. NiTi layered double hydroxide thin films for advanced pseudocapacitor electrodes. J. Mater. Chem. A 2013, 1, 10655–10661.

[12]

Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

[13]

Tang, Z.; Tang, C. H.; Gong, H. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 2012, 22, 1272–1278.

[14]

Li, K. Z.; Zhao, B. C.; Bai, J.; Ma, H. Y.; Fang, Z. T.; Zhu, X. B.; Sun, Y. P. A high-energy-density hybrid supercapacitor with P-Ni(OH)2@Co(OH)2 core–shell heterostructure and Fe2O3 nanoneedle arrays as advanced integrated electrodes. Small 2020, 16, 2001974.

[15]

Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

[16]

Wang, Y.; Yin, Z. L.; Li, X. H.; Guo, H. J.; Zhang, D. C.; Wang, Z. X. Smartly tailored Co(OH)2-Ni(OH)2 heterostucture on nickel foam as binder-free electrode for high-energy hybrid capacitors. Electrochim. Acta 2019, 309, 140–147.

[17]

Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184.

[18]

Gu, Y. H.; Bao, A.; Wang, X. Y.; Chen, Y. Z.; Dong, L.; Liu, X.; Pan, H. J.; Li, Y.; Qi, X. W. Engineering the oxygen vacancies of rocksalt-type high-entropy oxides for enhanced electrocatalysis. Nanoscale 2022, 14, 515–524.

[19]

Mao, Y. Y.; Xie, J. Y.; Liu, H.; Hu, W. B. Hierarchical core–shell Ag@Ni(OH)2@PPy nanowire electrode for ultrahigh energy density asymmetric supercapacitor. Chem. Eng. J. 2021, 405, 126984.

[20]

Dong, B.; Li, W.; Huang, X. X.; Ali, Z.; Zhang, T.; Yang, Z. Y.; Hou, Y. L. Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy 2019, 55, 37–41.

[21]

Li, S. L.; Zhang, J. Q.; Li, Y. N.; Fan, P. X.; Wu, M. B. Revisiting N, S co-doped carbon materials with boosted electrochemical performance in sodium-ion capacitors: The manipulation of internal electric field. Nano Res. Energy 2024, 3, e9120098.

[22]

Zhang, Y.; Zhao, Y. F.; An, W. D.; Xing, L.; Gao, Y. F.; Liu, J. R. Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance. J. Mater. Chem. A 2017, 5, 10039–10047.

[23]

Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

[24]

Huang, S. Y.; Cheng, B.; Yu, J. G.; Jiang, C. J. Hierarchical Pt/MnO2-Ni(OH)2 hybrid nanoflakes with enhanced room-temperature formaldehyde oxidation activity. ACS Sustain. Chem. Eng. 2018, 6, 12481–12488.

[25]

Tong, Y.; Chen, P. Z.; Zhou, T. P.; Xu, K.; Chu, W. S.; Wu, C. Z.; Xie, Y. A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene. Angew. Chem., Int. Ed. 2017, 56, 7121–7125.

[26]

Kim, N.; Lim, D.; Choi, Y.; Shim, S. E.; Baeck, S. H. Hexagonal β-Ni(OH)2 nanoplates with oxygen vacancies as efficient catalysts for the oxygen evolution reaction. Electrochim. Acta 2019, 324, 134868.

[27]

Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C–N bonds to nitrile C≡N bonds. Angew. Chem., Int. Ed. 2020, 59, 16974–16981.

[28]

Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.

[29]

Ganduglia-Pirovano, M. V.; Da Silva, J. L. F.; Sauer, J. Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). Phys. Rev. Lett. 2009, 102, 026101.

[30]

Gu, Y. H.; Wang, X. Y.; Bao, A.; Dong, L.; Zhang, X. Y.; Pan, H. J.; Cui, W. Q.; Qi, X. W. Enhancing electrical conductivity of single-atom doped Co3O4 nanosheet arrays at grain boundary by phosphor doping strategy for efficient water splitting. Nano Res. 2022, 15, 9511–9519.

[31]

Ji, Q. Q.; Bi, L.; Zhang, J. T.; Cao, H. J.; Zhao, X. S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428.

[32]

Qin, H. Y.; Ye, Y. K.; Li, J. H.; Jia, W. Q.; Zheng, S. Y.; Cao, X. J.; Lin, G. L.; Jiao, L. F. Synergistic engineering of doping and vacancy in Ni(OH)2 to boost urea electrooxidation. Adv. Funct. Mater. 2023, 33, 2209698.

[33]

Zhang, H. W.; Liu, S. X.; Hu, E. L.; Yang, Y. F.; Zhang, H. M.; Zhu, Y. T.; Yan, L. J.; Gao, X. H.; Zhang, J.; Lin, Z. Iron-doped Ag/Ni2(CO3)(OH)2 hierarchical microtubes for highly efficient water oxidation. Carbon Energy 2022, 4, 939–949.

[34]

Gu, Y. H.; Zhang, X. Y.; Du, Q.; Li, Y.; Zhang, M.; Pan, H. J.; Qi, X. W. Electrochemical tuning induced oxygen vacancies for the photoluminescence enhancement. Ceram. Int. 2020, 46, 4071–4078.

[35]

Bernard, M. C.; Cortes, R.; Keddam, M.; Takenouti, H.; Bernard, P.; Senyarich, S. Structural defects and electrochemical reactivity of β-Ni(OH)2. J. Power Sources 1996, 63, 247–254.

[36]

Liu, L. Z.; Wu, X. L.; Li, T. H.; Shen, J. C. Correlation of the 755–778 cm−1 Raman mode with oxygen vacancies in tin oxide nanostructures. Appl. Surf. Sci. 2015, 347, 265–268.

[37]

Lu, Z. Y.; Chang, Z.; Zhu, W.; Sun, X. M. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 2011, 47, 9651–9653.

[38]

Zhu, G. X.; Xi, C. Y.; Shen, M. Q.; Bao, C. L.; Zhu, J. Nanosheet-based hierarchical Ni2(CO3)(OH)2 microspheres with weak crystallinity for high-performance supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 17208–17214.

[39]

Lee, J. W.; Ko, J. M.; Kim, J. D. Hierarchical microspheres based on α-Ni(OH)2 nanosheets intercalated with different anions: Synthesis, anion exchange, and effect of intercalated anions on electrochemical capacitance. J. Phys. Chem. C 2011, 115, 19445–19454.

[40]

Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

[41]

Luo, H. X.; Liu, Z. Y.; Chao, L. M.; Wu, X. C.; Lei, X. D.; Chang, Z.; Sun, X. M. Synthesis of hierarchical porous N-doped sandwich-type carbon composites as high-performance supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 3667–3675.

[42]

Yang, Y.; Li, L.; Ruan, G. D.; Fei, H. L.; Xiang, C. S.; Fan, X. J.; Tour, J. M. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. ACS Nano 2014, 8, 9622–9628.

[43]

Xu, L. L.; Zhao, H. Y.; Sun, M. Z.; Huang, B. L.; Wang, J. W.; Xia, J. L.; Li, N.; Yin, D. D.; Luo, M.; Luo, F. et al. Oxygen vacancies on layered niobic acid that weaken the catalytic conversion of polysulfides in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 11491–11496.

[44]

Sinclair, D. C.; Adams, T. B.; Morrison, F. D.; West, A. R. CaCu3Ti4O12: One-step internal barrier layer capacitor. Appl. Phys. Lett. 2002, 80, 2153–2155.

File
6473_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 October 2023
Revised: 28 December 2023
Accepted: 06 January 2024
Published: 23 February 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 51972048), Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province (No. 22567627H), the National Key Research and Development Program of China (No. 2022YFB3706300), and the National Natural Science Foundation of China (No. U23A20605).

Return