Journal Home > Volume 17 , Issue 6

The electrochemical reduction of nitrate to ammonia (ENRA) provides an efficient approach to remove nitrate pollution and achieve ammonia production simultaneously. Herein, inspired by bio-enzyme in denitrifying bacteria, a carbon-coated nickel phosphide (NiPC) nanosheet derived from metal-organic frameworks (MOFs) is proposed as an efficient catalyst for ENRA. Through electron engineering, controllable Niδ+ in nickel phosphide is achieved by regulating the degree of phosphating, which enhances its activity for the hydrogenation of nitrate. As the result, Niδ+ becomes one of dominating factors determining the efficiency of the ENRA reaction in nickel phosphide. The optimal NiPC catalyst exhibits impressive property toward ENRA: NH4+ Faraday efficiency of 96.68%, NH4+ selectivity of 99.04%, and nitrate conversion rate of 90.43% under low nitrate concentration (200 mg·L−1). This work opens a new avenue for the design of next-generation catalysts through electron engineering for ENRA.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electron engineering of nickel phosphide for Niδ+ in electrochemical nitrate reduction to ammonia

Show Author's information Jie Hu1Hao Huang2( )Miao Yu1Shuang Wang1,3( )Jinping Li3
College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
School of Sustainable Energy Materials and Science, Jinhua Advanced Research Institute, Jinhua 321000, China
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

The electrochemical reduction of nitrate to ammonia (ENRA) provides an efficient approach to remove nitrate pollution and achieve ammonia production simultaneously. Herein, inspired by bio-enzyme in denitrifying bacteria, a carbon-coated nickel phosphide (NiPC) nanosheet derived from metal-organic frameworks (MOFs) is proposed as an efficient catalyst for ENRA. Through electron engineering, controllable Niδ+ in nickel phosphide is achieved by regulating the degree of phosphating, which enhances its activity for the hydrogenation of nitrate. As the result, Niδ+ becomes one of dominating factors determining the efficiency of the ENRA reaction in nickel phosphide. The optimal NiPC catalyst exhibits impressive property toward ENRA: NH4+ Faraday efficiency of 96.68%, NH4+ selectivity of 99.04%, and nitrate conversion rate of 90.43% under low nitrate concentration (200 mg·L−1). This work opens a new avenue for the design of next-generation catalysts through electron engineering for ENRA.

Keywords: metal-organic frameworks, transition metal phosphide, nitrate reduction, ammonia production, electron engineering

References(61)

[1]

Picetti, R.; Deeney, M.; Pastorino, S.; Miller, M. R.; Shah, A.; Leon, D. A.; Dangour, A. D.; Green, R. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environ. Res. 2022, 210, 112988.

[2]

Xiao, Y.; Hao, Q. C.; Zhang, Y. H.; Zhu, Y. C.; Yin, S. Y.; Qin, L. M.; Li, X. H. Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Sci. Total Environ. 2022, 802, 149909.

[3]

Zhang, X.; Zhang, Y.; Shi, P.; Bi, Z. L.; Shan, Z. X.; Ren, L. J. The deep challenge of nitrate pollution in river water of China. Sci. Total Environ. 2021, 770, 144674.

[4]

Raza, S.; Zamanian, K.; Ullah, S.; Kuzyakov, Y.; Virto, I.; Zhou, J. B. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. J. Cleaner Prod. 2021, 315, 128036.

[5]

Camargo, J. A.; Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849.

[6]

Rezvani, F.; Sarrafzadeh, M. H.; Ebrahimi, S.; Oh, H. M. Nitrate removal from drinking water with a focus on biological methods: A review. Environ. Sci. Pollut. Res. 2019, 26, 1124–1141.

[7]

Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233.

[8]

Hao, D.; Chen, Z. G.; Figiela, M.; Stepniak, I.; Wei, W.; Ni, B. J. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction. J. Mater. Sci. Technol. 2021, 77, 163–168.

[9]

Theerthagiri, J.; Park, J.; Das, H. T.; Rahamathulla, N.; Cardoso, E. S. F.; Murthy, A. P.; Maia, G.; Vo, D. N.; Choi, M. Y. Electrocatalytic conversion of nitrate waste into ammonia: A review. Environ. Chem. Lett. 2022, 20, 2929–2949.

[10]

Gao, J. N.; Shi, N.; Guo, X. B.; Li, Y. F.; Bi, X. J.; Qi, Y. F.; Guan, J.; Jiang, B. Electrochemically selective ammonia extraction from nitrate by coupling electron- and phase-transfer reactions at a three-phase interface. Environ. Sci. Technol. 2021, 55, 10684–10694.

[11]

Cesaro, Z.; Ives, M.; Nayak-Luke, R.; Mason, M.; Bañares-Alcántara, R. Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants. Appl. Energy 2021, 282, 116009.

[12]

Liu, D.; Qiao, L. L.; Peng, S. Y.; Bai, H. Y.; Liu, C. F.; Ip, W. F.; Lo, K. H.; Liu, H. C.; Ng, K. W.; Wang, S. P. et al. Recent advances in electrocatalysts for efficient nitrate reduction to ammonia. Adv. Funct. Mater. 2023, 33, 2303480.

[13]

Chen, W. D.; Yang, X. Y.; Chen, Z. D.; Ou, Z. J.; Hu, J. T.; Xu, Y.; Li, Y. L.; Ren, X. Z.; Ye, S. H.; Qiu, J. S. et al. Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion. Adv. Funct. Mater. 2023, 33, 2300512.

[14]

Zhou, J.; Wen, M.; Huang, R.; Wu, Q. S.; Luo, Y. X.; Tian, Y. K.; Wei, G. F.; Fu, Y. Q. Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2023, 16, 2611–2620.

[15]

Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.

[16]

Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148.

[17]

Duffner, C.; Kublik, S.; Fösel, B.; Frostegård, Å.; Schloter, M.; Bakken, L.; Schulz, S. Genotypic and phenotypic characterization of hydrogenotrophic denitrifiers. Environ. Microbiol. 2022, 24, 1887–1901.

[18]

Kim, D. H.; Kim, M. S. Hydrogenases for biological hydrogen production. Bioresour. Technol. 2011, 102, 8423–8431.

[19]

Chouki, T.; Machreki, M.; Rutkowska, I. A.; Rytelewska, B.; Kulesza, P. J.; Tyuliev, G.; Harb, M.; Azofra, L. M.; Emin, S. Highly active iron phosphide catalysts for selective electrochemical nitrate reduction to ammonia. J. Environ. Chem. Eng. 2023, 11, 109275.

[20]

Gao, Y.; Wang, R.; Li, Y. D.; Han, E. S.; Song, M. S.; Yang, Z. Y.; Guo, F.; He, Y. Z.; Yang, X. H. Regulating dynamic equilibrium of active hydrogen for super-efficient nitrate electroreduction to ammonia. Chem. Eng. J. 2023, 474, 145546.

[21]

Zhang, R.; Guo, Y.; Zhang, S. C.; Chen, D.; Zhao, Y. W.; Huang, Z. D.; Ma, L. T.; Li, P.; Yang, Q.; Liang, G. J. et al. Efficient ammonia electrosynthesis and energy conversion through a Zn-nitrate battery by iron doping engineered nickel phosphide catalyst. Adv. Energy Mater. 2022, 12, 2103872.

[22]

Wei, L.; Liu, D. J.; Rosales, B. A.; Evans, J. W.; Vela, J. Mild and selective hydrogenation of nitrate to ammonia in the absence of noble metals. ACS Catal. 2020, 10, 3618–3628.

[23]

Yao, Q. F.; Chen, J. B.; Xiao, S. Z.; Zhang, Y. L.; Zhou, X. F. Selective electrocatalytic reduction of nitrate to ammonia with nickel phosphide. ACS Appl. Mater. Interfaces 2021, 13, 30458–30467.

[24]

Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878.

[25]

Jo, S.; Kang, B.; Oh, H.; Kwon, J.; Choi, P.; Cho, K. Y.; Lee, J. H.; Eom, K. Reconstruction of a surficial P-rich layer on Ni-P electrocatalysts for efficient hydrogen evolution applicable in acidic and alkaline media. Chem. Eng. J. 2023, 457, 141138.

[26]

Shi, Y. M.; Li, M. Y.; Yu, Y. F.; Zhang, B. Recent advances in nanostructured transition metal phosphides: Synthesis and energy-related applications. Energy Environ. Sci. 2020, 13, 4564–4582.

[27]

Lyu, C.; Cao, C. Y.; Cheng, J. R.; Yang, Y. Q.; Wu, K. L.; Wu, J. W.; Lau, W. M.; Qian, P.; Wang, N.; Zheng, J. L. Interfacial electronic structure modulation of Ni2P/Ni5P4 heterostructure nanosheets for enhanced pH-universal hydrogen evolution reaction performance. Chem. Eng. J. 2023, 464, 142538.

[28]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[29]

Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.

[30]

Zheng, Y.; Zheng, S. S.; Xu, Y. X.; Xue, H. G.; Liu, C. S.; Pang, H. Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. Chem. Eng. J. 2019, 373, 1319–1328.

[31]

Xu, H. K.; Wei, X. F.; Zeng, H.; Jiang, C. H.; Wang, Z. F.; Ouyang, Y. G.; Lu, C. Y.; Jing, Y.; Yao, S. W.; Dai, F. N. Recent progress of two-dimensional metal-organic-frameworks: From synthesis to electrocatalytic oxygen evolution. Nano Res. 2023, 16, 8614–8637.

[32]

Liu, Y. Z.; Li, X. T.; Sun, Q. D.; Wang, Z. L.; Huang, W. H.; Guo, X. Y.; Fan, Z. X.; Ye, R. Q.; Zhu, Y.; Chueh, C. C. et al. Freestanding 2D NiFe metal-organic framework nanosheets: Facilitating proton transfer via organic ligands for efficient oxygen evolution reaction. Small 2022, 18, 2201076.

[33]

Cao, L. M.; Zhang, J.; Ding, L. W.; Du, Z. Y.; He, C. T. Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting. J. Energy Chem. 2022, 68, 494–520.

[34]

Li, P.; Li, W. Q.; Huang, Y. Q.; Huang, Q. H.; Li, F. L.; Tian, S. H. Surface engineering over metal-organic framework nanoarray to realize boosted and sustained urea oxidation. Small 2023, 19, 2305585.

[35]

Qu, H. Q.; Ma, Y. R.; Gou, Z. L.; Li, B.; Liu, Y. R.; Zhang, Z. X.; Wang, L. Ni2P/C nanosheets derived from oriented growth Ni-MOF on nickel foam for enhanced electrocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 572, 83–90.

[36]

Li, L. Y.; Jin, Y. H.; Zeng, C. T.; Ren, D. Y.; Zhou, K. L.; Zhang, Q. Q.; Liu, J. B.; Zhou, Q. Q.; Wang, H. Porous hierarchical Ni2P nanosheet arrays combined with Cu3P layers on copper foam as a binder-free battery-type cathode for high-energy-density asymmetrical all-solid-state electrochemical capacitors. J. Energy Storage 2022, 52, 104783.

[37]

Qin, J. Z.; Wu, K.; Chen, L. Z.; Wang, X. T.; Zhao, Q. L.; Liu, B. J.; Ye, Z. F. Achieving high selectivity for nitrate electrochemical reduction to ammonia over MOF-supported Ru x O y clusters. J. Mater. Chem. A 2022, 10, 3963–3969.

[38]

Ai, L. H.; Li, N.; Chen, M.; Jiang, H. L.; Jiang, J. Photothermally boosted water splitting electrocatalysis by broadband solar harvesting nickel phosphide within a quasi-MOF. J. Mater. Chem. A 2021, 9, 16479–16488.

[39]

Pan, F.; Zhou, J. J.; Wang, T.; Zhu, Y. Q.; Ma, H. R.; Niu, J. F.; Wang, C. Y. Revealing the activity origin of ultrathin nickel metal-organic framework nanosheet catalysts for selective electrochemical nitrate reduction to ammonia: Experimental and density functional theory investigations. J. Colloid Interface Sci. 2023, 638, 26–38.

[40]

Gong, S. H.; Xiao, X. X.; Wang, W. B.; Sam, D. K.; Lu, R. Q.; Xu, Y. G.; Liu, J.; Wu, C. D.; Lv, X. M. Silk fibroin-derived carbon aerogels embedded with copper nanoparticles for efficient electrocatalytic CO2-to-CO conversion. J. Colloid Interface Sci. 2021, 600, 412–420.

[41]

Liu, X. B.; Li, W. X.; Zhao, X. D.; Liu, Y. C.; Nan, C. W.; Fan, L. Z. Two birds with one stone: Metal-organic framework derived micro-/nanostructured Ni2P/Ni hybrids embedded in porous carbon for electrocatalysis and energy storage. Adv. Funct. Mater. 2019, 29, 1901510.

[42]

Ma, J. H.; Zhang, Y. T.; Wang, B. W.; Jiang, Z. X.; Zhang, Q. Y.; Zhuo, S. F. Interfacial engineering of bimetallic Ni/Co-MOFs with H-substituted graphdiyne for ammonia electrosynthesis from nitrate. ACS Nano 2023, 17, 6687–6697.

[43]

Zhao, S. Y.; Zheng, Z. Q.; Qi, L.; Xue, Y. R.; Li, Y. L. Controlled growth of donor–bridge–acceptor interface for high-performance ammonia production. Small 2022, 18, 2107136.

[44]

Ayiania, M.; Smith, M.; Hensley, A. J. R.; Scudiero, L.; McEwen, J. S.; Garcia-Perez, M. Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. Carbon 2020, 162, 528–544.

[45]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

[46]

Kim, K. H.; Lee, H.; Huang, X. P.; Choi, J. H.; Chen, C. P.; Kang, J. K.; O’Hare, D. Energy-efficient electrochemical ammonia production from dilute nitrate solution. Energy Environ. Sci. 2023, 16, 663–672.

[47]

Song, Z. M.; Liu, Y.; Zhong, Y. Z.; Guo, Q.; Zeng, J.; Geng, Z. G. Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect. Adv. Mater. 2022, 34, 2204306.

[48]

Ge, Z. X.; Wang, T. J.; Ding, Y.; Yin, S. B.; Li, F. M.; Chen, P.; Chen, Y. Interfacial engineering enhances the electroactivity of frame-like concave RhCu bimetallic nanocubes for nitrate reduction. Adv. Energy Mater. 2022, 12, 2103916.

[49]

Gao, Y. H.; Wang, K. P.; Xu, C.; Fang, H.; Yu, H. L.; Zhang, H.; Li, S. K.; Li, C. H.; Huang, F. Z. Enhanced electrocatalytic nitrate reduction through phosphorus-vacancy-mediated kinetics in heterogeneous bimetallic phosphide hollow nanotube array. Appl. Catal. B: Environ. 2023, 330, 122627.

[50]

Wang, K. F.; Mao, R.; Liu, R.; Zhang, J. J.; Zhao, X. Sulfur-dopant-promoted electrocatalytic reduction of nitrate by a self-supported iron cathode: Selectivity, stability, and underlying mechanism. Appl. Catal. B: Environ. 2022, 319, 121862.

[51]

Zhao, Y. L.; Liu, Y.; Zhang, Z. J.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.

[52]

Cheng, L.; Ma, T. H.; Zhang, B. H.; Huang, L. B.; Guo, W. H.; Hu, F. J.; Zhu, H.; Wang, Z. Y.; Zheng, T. T.; Yang, D. T. et al. Steering the topological defects in amorphous laser-induced graphene for direct nitrate-to-ammonia electroreduction. ACS Catal. 2022, 12, 11639–11650.

[53]

Du, Z. Z.; Yang, K.; Du, H. F.; Li, B. X.; Wang, K.; He, S.; Wang, T. F.; Ai, W. Facile and scalable synthesis of self-supported Zn-doped CuO nanosheet arrays for efficient nitrate reduction to ammonium. ACS Appl. Mater. Interfaces 2023, 15, 5172–5179.

[54]

Du, F.; Cui, G. H.; Yang, B. L.; Zhang, D. S.; Song, R. F.; Li, Z. X. Ingenious design of one mixed-valence dual-net copper metal-organic framework for deriving Cu2O/CuO heterojunction with highly electrocatalytic performances from NO3 to NH3. J. Power Sources 2022, 543, 231832.

[55]

Tao, W. X.; Wang, P. F.; Hu, B.; Wang, X.; Zhou, G. Accelerating the reaction kinetics from nitrate to ammonia by anion substitution in NiCo-based catalysts. J. Environ. Chem. Eng. 2023, 11, 109117.

[56]

Sun, W. J.; Li, L. X.; Zhang, H. Y.; He, J. H.; Lu, J. M. A bioinspired iron-centered electrocatalyst for selective catalytic reduction of nitrate to ammonia. ACS Sustainable Chem. Eng. 2022, 10, 5958–5965.

[57]

Yin, Q.; Hu, S. H.; Liu, J. W.; Zhou, H. Electrochemical ammonia synthesis via nitrate reduction on perovskite La x FeO3− δ with enhanced efficiency by oxygen vacancy engineering. Sustain. Energy Fuels 2022, 6, 4716–4725.

[58]

Yan, J. Y.; Liu, P.; Li, J. W.; Huang, H.; Song, W. B. Effect of valence state on electrochemical nitrate reduction to ammonia in molybdenum catalysts. Chem. Eng. J. 2023, 459, 141601.

[59]

Zhao, J. X.; Ren, X.; Liu, X. J.; Kuang, X.; Wang, H.; Zhang, C. W.; Wei, Q.; Wu, D. Zn single atom on N-doped carbon: Highly active and selective catalyst for electrochemical reduction of nitrate to ammonia. Chem. Eng. J. 2023, 452, 139533.

[60]

Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531.

[61]

Liu, L. Y.; Xiao, T.; Fu, H. Y.; Chen, Z. J.; Qu, X. L.; Zheng, S. R. Construction and identification of highly active single-atom Fe1-NC catalytic site for electrocatalytic nitrate reduction. Appl. Catal. B: Environ. 2023, 323, 122181.

File
12274_2024_6470_MOESM1_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 November 2023
Revised: 24 December 2023
Accepted: 03 January 2024
Published: 08 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (Nos. 22078215 and 22002083) and Research Project by Shanxi Scholarship Council of China (No. 2021-055).

Return