Journal Home > Online First

Electrocatalysts with optimal efficiency and durability for the oxygen evolution reaction (OER) are becoming increasingly important as the demand for alkaline water/seawater electrolysis technology grows. Herein, a novel rose-shaped NiFe-layered double hydroxide (LDH)/NiCo2O4 composed of amorphous wrinkled NiFe-LDH and highly crystalline NiCo2O4 was synthesized with rich heterointerfaces. Many unsaturated metal sites are generated due to significant charge reconstruction at the heterointerface between the crystalline and amorphous phases. These metal sites could trigger and provide more active sites. The density functional theory (DFT) reveals that a new charge transfer channel (Co-Fe) was formed at the heterointerface between NiFe-LDH as electron acceptor and NiCo2O4 as electron donor. The new charge transfer channel boosts interfacial charge transfer and enhances catalytic efficiency. The NiFe-LDH/NiCo2O4/nickel foam (NF) drives current densities of 10 and 100 mA·cm−2 with overpotentials of 193 and 236 mV, respectively. The composite electrode demonstrates a fast turnover frequency (0.0143 s−1) at 1.45 V vs. RHE (RHE = reversible hydrogen electrode), which is 5.5 times greater than pure NiCo2O4, suggesting its superior intrinsic activity. Additionally, NiFe-LDH/NiCo2O4/NF electrode exhibited negligible degradation after 150 h of uninterrupted running in alkaline seawater oxidation. This study introduces a method for preparing high-efficiency electrocatalysts utilized in alkaline water/seawater electrolysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting charge transfer via interface charge reconstruction between amorphous NiFe-LDH and crystalline NiCo2O4 for efficient alkaline water/seawater oxidation

Show Author's information Zhonghang Xing1Yi Zhao1Yunhai Wang2Xiaohe Liu3Zhiqiang Guo4Qingyun Chen1( )
International Research Center for Renewable Energy and State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
China School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710049, China
Changqing Engineering Design Co., Ltd., Xi’an 710018, China

Abstract

Electrocatalysts with optimal efficiency and durability for the oxygen evolution reaction (OER) are becoming increasingly important as the demand for alkaline water/seawater electrolysis technology grows. Herein, a novel rose-shaped NiFe-layered double hydroxide (LDH)/NiCo2O4 composed of amorphous wrinkled NiFe-LDH and highly crystalline NiCo2O4 was synthesized with rich heterointerfaces. Many unsaturated metal sites are generated due to significant charge reconstruction at the heterointerface between the crystalline and amorphous phases. These metal sites could trigger and provide more active sites. The density functional theory (DFT) reveals that a new charge transfer channel (Co-Fe) was formed at the heterointerface between NiFe-LDH as electron acceptor and NiCo2O4 as electron donor. The new charge transfer channel boosts interfacial charge transfer and enhances catalytic efficiency. The NiFe-LDH/NiCo2O4/nickel foam (NF) drives current densities of 10 and 100 mA·cm−2 with overpotentials of 193 and 236 mV, respectively. The composite electrode demonstrates a fast turnover frequency (0.0143 s−1) at 1.45 V vs. RHE (RHE = reversible hydrogen electrode), which is 5.5 times greater than pure NiCo2O4, suggesting its superior intrinsic activity. Additionally, NiFe-LDH/NiCo2O4/NF electrode exhibited negligible degradation after 150 h of uninterrupted running in alkaline seawater oxidation. This study introduces a method for preparing high-efficiency electrocatalysts utilized in alkaline water/seawater electrolysis.

Keywords: heterogeneous interfaces, charge reconstruction, water/seawater electrolysis, NiFe-layered double hydroxide (LDH)/NiCo2O4/nickel foam (NF)

References(64)

[1]

Xu, Y. L.; Wang, C.; Huang, Y. H.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.

[2]

Liu, R. T.; Xu, Z. L.; Li, F. M.; Chen, F. Y.; Yu, J. Y.; Yan, Y.; Chen, Y.; Xia, B. Y. Recent advances in proton exchange membrane water electrolysis. Chem. Soc. Rev. 2023, 52, 5652–5683.

[3]

Lee, J. W.; Kim, B.; Seo, J. Y.; Kim, Y. S.; Yoo, P.; Chung, C. H. Water electrolysis and desalination using an AEM/CEM hybrid electrochemical system. Appl. Surf. Sci. 2023, 610, 155524.

[4]

Panda, C.; Menezes, P. W.; Zheng, M.; Orthmann, S.; Driess, M. In situ formation of nanostructured core–shell Cu3N-CuO to promote alkaline water electrolysis. ACS Energy Lett. 2019, 4, 747–754

[5]

Liu, X. H.; He, Y.; Li, Z.; Cheng, A. H.; Song, Z. Q.; Yu, Z. X.; Chai, S. N.; Cheng, C.; He, C. Size transformation of Au nanoclusters for enhanced photocatalytic hydrogen generation: Interaction behavior at nanocluster/semiconductor interface. J. Colloid Interface Sci. 2023, 651, 368–375.

[6]

Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 2020, 78, 105270.

[7]

Seow, J. Z. Y.; Nguyen, T. D. Electrochemically assisted synthesis of ultra-small Ru@IrO x core–shell nanoparticles for water splitting electro-catalysis. Electrochim. Acta 2020, 341, 136058.

[8]

Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on nio matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

[9]

Guo, H. L.; Zhou, J.; Li, Q. Q.; Li, Y. M.; Zong, W.; Zhu, J. X.; Xu, J. S.; Zhang, C.; Liu, T. X. Emerging dual-channel transition-metal-oxide quasiaerogels by self-embedded templating. Adv. Funct. Mater. 2020, 30, 2000024.

[10]

Guo, C. Y.; Liu, X. J.; Gao, L. F.; Ma, X. J.; Zhao, M. Z.; Zhou, J. Z.; Kuang, X.; Deng, W. Q.; Sun, X.; Wei, Q. Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting. J. Mater. Chem. A 2019, 7, 21704–21710.

[11]

Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1− x Fe x P2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702–709.

[12]

Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.

[13]

Zhang, H.; Xi, B. J.; Gu, Y.; Chen, W. H.; Xiong, S. L. Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473.

[14]

Yin, J.; Jin, J.; Lin, H. H.; Yin, Z. Y.; Li, J. Y.; Lu, M.; Guo, L. C.; Xi, P. X.; Tang, Y.; Yan, C. H. Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 2020, 7, 1903070.

[15]

Seenivasan, S.; Seo, J. Inverting destructive electrochemical reconstruction of niobium nitride catalyst to construct highly efficient HER/OER catalyst. Chem. Eng. J. 2023, 454, 140558.

[16]

Tian, D.; Denny, S. R.; Li, K. Z.; Wang, H.; Kattel, S.; Chen, J. G. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem. Soc. Rev. 2021, 50, 12338–12376.

[17]

Zhang, K. X.; Zou, R. Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129.

[18]

Zhang, C.; Xu, W.; Li, S. T.; Wang, X. H.; Guan, Z. Y.; Zhang, M. L.; Wu, J.; Ma, X. X.; Wu, M. L.; Qi, Y. F. Core–shell heterojunction engineering of Ni0.85Se-O/CN electrocatalyst for efficient OER. Chem. Eng. J. 2023, 454, 140291.

[19]

Zhang, L.; Peng, J. H.; Zhang, W.; Yuan, Y.; Peng, K. Rational introduction of borate and phosphate ions on NiCo2O4 surface for high-efficiency overall water splitting. J. Power Sources 2021, 490, 229541.

[20]

Bao, W. W.; Xiao, L.; Zhang, J. J.; Jiang, P.; Zou, X. Y.; Yang, C. M.; Hao, X. L.; Ai, T. T. Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction. Int. J. Hydrog. Energy 2021, 46, 10259–10267.

[21]

Wang, D. D.; Ruan, S. S.; Ma, P. Y.; Wang, R. Y.; Ding, X. L.; Zuo, M.; Zhang, L. D.; Zhang, Z. R.; Zeng, J.; Bao, J. Confinement synergy at the heterointerface for enhanced oxygen evolution. Nano Res. 2023, 16, 8793–8799.

[22]

Wang, T. T., Wang, P. Y.; Zang, W. J.; Li, X.; Chen, D.; Kou, Z. K.; Mu, S. C.; Wang, J. Nanoframes of Co3O4-Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER. Adv. Funct. Mater. 2022, 32, 2107382.

[23]

Chhetri, K.; Muthurasu, A.; Dahal, B.; Kim, T.; Mukhiya, T.; Chae, S. H.; Ko, T. H.; Choi, Y. C.; Kim, H. Y. Engineering the abundant heterointerfaces of integrated bimetallic sulfide-coupled 2D MOF-derived mesoporous CoS2 nanoarray hybrids for electrocatalytic water splitting. Mater. Today Nano 2022, 17, 100146.

[24]

Gao, W.; Gou, W. Y.; Ma, Y. Y.; Wei, R. J.; Ho, J. C.; Qu, Y. Q. Cerium phosphate as a novel cocatalyst promoting NiCo2O4 nanowire arrays for efficient and robust electrocatalytic oxygen evolution. ACS Appl. Energy Mater. 2019, 2, 5769–5776.

[25]

Pan, Z. Y.; Tang, Z.; Sun, D.; Zhan, Y. Z. Hierarchical NiCo2S4@NiMoO4 nanotube arrays on nickel foam as an advanced bifunctional electrocatalyst for efficient overall water splitting. Electrochim. Acta 2022, 436, 141393.

[26]

Balaji, R.; Nguyen, T. T.; Harish, K.; Kim, N. H.; Lee, J. H. Modulating heterointerfaces of tungsten incorporated CoSe/Co3O4 as a highly efficient electrocatalyst for overall water splitting. J. Mater. Chem. A 2022, 10, 3782–3792.

[27]

Zhang, Y. P.; Gao, F.; Wang, D. Q.; Li, Z. L.; Wang, X. M.; Wang, C. Q.; Zhang, K. W.; Du, Y. K. Amorphous/crystalline heterostructure transition-metal-based catalysts for high-performance water splitting. Coord. Chem. Rev. 2023, 475, 214916.

[28]

Anantharaj, S.; Noda, S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020, 16, 1905779.

[29]

Chen, Y. H.; Yue, K. H.; Zhao, J. W.; Cai, Z. Y.; Wang, X. Y.; Yan, Y. Effective modulating of the Mo dissolution and polymerization in Ni4Mo/NiMoO4 heterostructure via metal–metal oxide–support interaction for boosting H2 production. Chem. Eng. J. 2023, 466, 143097.

[30]

Zhou, T. X.; Yang, Y. F.; Jing, Y. K.; Hu, Y. L.; Yang, F.; Sun, W.; He, L. L. Defective blue titanium oxide induces high valence of NiFe-(oxy)hydroxides over heterogeneous interfaces towards high OER catalytic activity. Chem. Sci. 2023, 4, 13453–13462.

[31]

Zhang, S. C.; Wang, Y.; Wei, X. T.; Chu, L.; Tian, W. Q.; Wang, H. L.; Huang, M. H. Dual interface-reinforced built-in electric field for chlorine-free seawater oxidation. Appl. Catal. B: Environ. 2023, 336, 122926.

[32]

Peng, D. Q.; Hu, C.; Luo, X. F.; Huang, J. L.; Ding, Y.; Zhou, W. D.; Zhou, H.; Yang, Y.; Yu, T.; Lei, W. et al. Electrochemical reconstruction of NiFe/NiFeOOH superparamagnetic core/catalytic shell heterostructure for magnetic heating enhancement of oxygen evolution reaction. Small 2023, 19, 2205665.

[33]

Gao, X. H.; Zhang, H. X.; Li, Q. G.; Yu, X. G.; Hong, Z. L.; Zhang, X. W.; Liang, C. D.; Lin, Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem., Int. Ed. 2016, 55, 6290–6294.

[34]

Du, X. Q.; Shao, Q. Z.; Zhang, X. S. Metal tungstate dominated NiCo2O4@NiWO4 nanorods arrays as an efficient electrocatalyst for water splitting. Int. J. Hydrog. Energy 2019, 44, 2883–2888.

[35]

Tian, G. Q.; Wei, S. R.; Guo, Z. T.; Wu, S. W.; Chen, Z. L.; Xu, F. M.; Cao, Y.; Liu, Z.; Wang, J. Q.; Ding, L. et al. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting. J. Mater. Sci. Technol. 2021, 77, 108–116.

[36]

Wang, Z. K.; Li, B. Z.; Wang, L. Y.; Chu, L.; Yang, M.; Wang, G. Amorphous-crystalline coupling CoS/Ni x P y /Fe-Ni3S2 heterostructure nanoplate array on NF for efficient overall water splitting. Electrochim. Acta 2023, 462, 142767.

[37]

Pang, Y.; Xu, W. C.; Zhu, S. L.; Cui, Z. D.; Liang, Y. Q.; Li, Z. Y.; Wu, S. L.; Chang, C. T.; Luo, S. Y. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting. J. Mater. Sci. Technol. 2021, 82, 96–104.

[38]

Song, H.; Oh, S.; Yoon, H.; Kim, K. H.; Ryu, S.; Oh, J. Bifunctional NiFe inverse opal electrocatalysts with heterojunction Si solar cells for 9.54%-efficient unassisted solar water splitting. Nano Energy 2017, 42, 1–7.

[39]

Ding, J. T.; Wang, P.; Ji, S.; Wang, H.; Brett, D. J. L.; Wang, R. F. Mesoporous nickel selenide N-doped carbon as a robust electrocatalyst for overall water splitting. Electrochim. Acta 2019, 300, 93–101.

[40]

Al-Enizi, A. M.; Shaikh, S. F.; Ubaidullah, M.; Ghanem, M. A.; Mane, R. S. Self-grown one-dimensional nickel sulfo-selenide nanostructured electrocatalysts for water splitting reactions. Int. J. Hydrog. Energy 2020, 45, 15904–15914.

[41]

Doan, T. L. L.; Nguyen, D. C.; Kang, K.; Ponnusamy, A.; Eya, H. I.; Dzade, N. Y.; Kim, C. S.; Park, C. H. Advanced Mott-Schottky heterojunction of semi-conductive MoS2 nanoparticles/metallic CoS2 nanotubes as an efficient multifunctional catalyst for urea-water electrolysis. Appl. Catal. B: Environ. 2024, 342, 123295.

[42]

Nie, F.; Li, Z.; Dai, X. P.; Yin, X. L.; Gan, Y. H.; Yang, Z. H.; Wu, B. Q.; Ren, Z. T.; Cao, Y. H.; Song, W. Y. Interfacial electronic modulation on heterostructured NiSe@CoFe LDH nanoarrays for enhancing oxygen evolution reaction and water splitting by facilitating the deprotonation of OH to O. Chem. Eng. J. 2022, 431, 134080.

[43]

Chen, C.; Su, H.; Lu, L. N.; Hong, Y. S.; Chen, Y. Z.; Xiao, K.; Ouyang, T.; Qin, Y. L.; Liu, Z. Q. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis. Chem. Eng. J. 2021, 408, 127814.

[44]

Li, Z. X.; Zhang, X.; Kang, Y. K.; Yu, C. C.; Wen, Y. Y.; Hu, M. L.; Meng, D.; Song, W. Y.; Yang, Y. Interface engineering of Co-LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction. Adv. Sci. 2021, 8, 2002631.

[45]

Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B: Environ. 2019, 247, 107–114.

[46]

Qiu, Z.; Ma, Y.; Edvinsson, T. In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting. Nano Energy 2019, 66, 104118

[47]

Shang, X.; Qin, J. F.; Lin, J. H.; Dong, B.; Chi, J. Q.; Liu, Z. Z.; Wang, L.; Chai, Y. M.; Liu, C. G. Tuning the morphology and Fe/Ni ratio of a bimetallic Fe-Ni-S film supported on nickel foam for optimized electrolytic water splitting. J. Colloid Interface Sci. 2018, 523, 121–132.

[48]

Li, R. P.; Ren, P. H.; Yang, P. X.; Li, Y. Q.; Zhang, H. L.; Liu, A. M.; Wen, S. Z.; Zhang, J. Q.; An, M. Z. Bimetallic co-doping engineering over nickel-based oxy-hydroxide enables high-performance electrocatalytic oxygen evolution. J. Colloid Interface Sci. 2023, 631, 173–181.

[49]

Wang, X. B.; Wang, J. L.; Liao, J.; Wang, L.; Li, M.; Xu, R. D.; Yang, L. J. Surface engineering of superhydrophilic Ni2P@NiFe LDH heterostructure toward efficient water splitting electrocatalysis. Appl. Surf. Sci. 2022, 602, 154287.

[50]

Jeung, Y.; Yong, K. Underwater superoleophobicity of a superhydrophilic surface with unexpected drag reduction driven by electrochemical water splitting. Chem. Eng. J. 2020, 381, 122734.

[51]

Kong, A. Q.; Peng, M.; Gu, H. Z.; Zhao, S. C.; Lv, Y.; Liu, M. H.; Sun, Y. W.; Dai, S. D.; Fu, Y.; Zhang, J. L. et al. Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chem. Eng. J. 2021, 426, 131234.

[52]

Shao, D.; Wang, Q.; Yao, X. Z.; Zhou, Y. T.; Yu, X. Y. Phase-engineering of nickel hydroxide in the Ni/Ni(OH)2 interface for efficient hydrogen evolution and hydrazine-assisted water splitting in seawater. J. Mater. Chem. A 2022, 10, 21848–21855.

[53]

Geng, B.; Yan, F.; Liu, L. N.; Zhu, C. L.; Li, B.; Chen, Y. J. Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting. Chem. Eng. J. 2021, 406, 126815.

[54]

Chen, Z.; Kronawitter, C. X.; Yeh, Y. W.; Yang, X. F.; Zhao, P.; Yao, N.; Koel, B. E. Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium. J. Mater. Chem. A 2017, 5, 842–850.

[55]

Swierk, J. R.; Klaus, S.; Trotochaud, L.; Bell, A. T.; Tilley, T. D. Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (oxy)hydroxide catalysts. J. Phys. Chem. C 2015, 119, 19022–19029.

[56]

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

[57]

Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39.

[58]

Huang, Y. Q.; Liu, X. H.; Li, X. L.; Guo, X.; Zhou, T.; Feng, H. Y.; Li, S. J.; Zhu, Y. Q.; Zhu, J. L.; Shen, P. K. Interfacial oxidation using potassium ferrate to fabricate self-supported hydrophilic NiFe-LDH nanoarrays for overall water splitting at high current density. Sustainable Mater. Technol. 2022, 34, e00508.

[59]

Su, H.; Jiang, J.; Li, N.; Gao, Y. Q.; Ge, L. NiCu alloys anchored defect-rich NiFe layered double-hydroxides as efficient electrocatalysts for overall water splitting. Chem. Eng. J. 2022, 446, 137226.

[60]

Liu, J.; Wang, J. S.; Zhang, B.; Ruan, Y. J.; Lv, L.; Ji, X.; Xu, K.; Miao, L.; Jiang, J. J. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Appl. Mater. Interfaces 2017, 9, 15364–15372.

[61]

Liu, G. Q.; Sun, Z. T.; Zhang, X.; Wang, H. J.; Wang, G. Z.; Wu, X. J.; Zhang, H. M.; Zhao, H. J. Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)2 into ultrathin Ni3S2 nanosheets on nickel foam for high-efficiency overall water splitting. J. Mater. Chem. A 2018, 6, 19201–19209.

[62]

Wen, Y.; Qi, J. Y.; Wei, P. C.; Kang, X.; Li, X. Design of Ni3N/Co2N heterojunctions for boosting electrocatalytic alkaline overall water splitting. J. Mater. Chem. A 2021, 9, 10260–10269.

[63]

Luo, J. B.; Wang, X. Z.; Gu, Y. F.; Wang, S. T.; Li, Y. P.; Wang, T. Y.; Liu, Y.; Zhou, Y.; Zhang, J. Hierarchical sheet-like W-doped NiCo2O4 spinel synthesized by high-valence oxyanion exchange strategy for highly efficient electrocatalytic oxygen evolution reaction. Chem. Eng. J. 2023, 472, 144839.

[64]

Zhao, Y. F.; Zhang, H.; Chen, J.; Zhao, S. W.; Xi, M.; Yang, L. F.; Long, Y. Y.; Ni, Z. T.; Zhou, Y.; Chen, A. R. Interfacial electronic engineering of heterostructured Co2P-MoNiP/NF nano-sea-urchin catalysts for efficient and stable hydrogen evolution via water/seawater splitting. Chem. Eng. J. 2023, 477, 147092.

File
6469_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 October 2023
Revised: 26 December 2023
Accepted: 03 January 2024
Published: 08 February 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21878242, 52206277, and 21828802), the Basic Science Center Program for Ordered Energy Conversion of National Nature Science Foundation (No. 51888103), and the China Postdoctoral Science Foundation (No. 2022MD723821).

Return