Journal Home > Volume 17 , Issue 6

Photoresponsiveness of materials is critical to their tunability and efficiency in terminal applications. Photoresponsive metal-organic polyhedra (PMOPs) feature intrinsic pores and remote controllability, but aggregation of PMOPs in solid state hampers their photoresponsiveness seriously. Herein, we report the construction of a new PMOP (Cu24(C16H12N2O4)12(C18H22O5)12, denoted as MOP-PR-LA), where long alkyl (LA) chains act as the intermolecular poles, propping against adjacent PMOP molecules to create individual microenvironment benefiting the isomerization of photoresponsive (PR) moieties. Upon ultraviolet (UV)- and visible-light irradiation, MOP-PR-LA is much easier to isomerize than the counterpart MOP-PR without LA. For propylene adsorption, MOP-PR has a low change of adsorption capacity (9.9%), while that of MOP-PR-LA reaches 58.6%. Density functional theory calculations revealed that PR in the cis state has a negative effect on adsorption, while the trans state of PR favors adsorption. This work might open an avenue for the construction of photoresponsive materials with high responsiveness and controllability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancing photoresponsiveness of metal-organic polyhedra by modifying microenvironment

Show Author's information Long ZhengPeng Tan( )Qian SongSheng-Tao WangMin LiXiao-Qin LiuLin-Bing Sun( )
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

Photoresponsiveness of materials is critical to their tunability and efficiency in terminal applications. Photoresponsive metal-organic polyhedra (PMOPs) feature intrinsic pores and remote controllability, but aggregation of PMOPs in solid state hampers their photoresponsiveness seriously. Herein, we report the construction of a new PMOP (Cu24(C16H12N2O4)12(C18H22O5)12, denoted as MOP-PR-LA), where long alkyl (LA) chains act as the intermolecular poles, propping against adjacent PMOP molecules to create individual microenvironment benefiting the isomerization of photoresponsive (PR) moieties. Upon ultraviolet (UV)- and visible-light irradiation, MOP-PR-LA is much easier to isomerize than the counterpart MOP-PR without LA. For propylene adsorption, MOP-PR has a low change of adsorption capacity (9.9%), while that of MOP-PR-LA reaches 58.6%. Density functional theory calculations revealed that PR in the cis state has a negative effect on adsorption, while the trans state of PR favors adsorption. This work might open an avenue for the construction of photoresponsive materials with high responsiveness and controllability.

Keywords: metal-organic polyhedra, azobenzene, photoresponsive adsorption, long alkyl chains, propylene capture

References(34)

[1]

Oh, N.; Kim, B. H.; Cho, S. Y.; Nam, S.; Rogers, S. P.; Jiang, Y. R.; Flanagan, J. C.; Zhai, Y.; Kim, J. H.; Lee, J. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 2017, 355, 616–619.

[2]

Zhang, X.; Wang, S.; Cheng, G. H.; Yu, P.; Chang, J. Light-responsive nanomaterials for cancer therapy. Engineering 2022, 13, 18–30.

[3]

Pearson, S.; Feng, J.; del Campo, A. Lighting the path: Light delivery strategies to activate photoresponsive biomaterials in vivo. Adv. Funct. Mater. 2021, 31, 2105989.

[4]

Zhu, W.; Guo, J. M.; Ju, Y.; Serda, R. E.; Croissant, J. G.; Shang, J.; Coker, E.; Agola, J. O.; Zhong, Q. Z.; Ping, Y. et al. Modular metal-organic polyhedra superassembly: From molecular-level design to targeted drug delivery. Adv. Mater. 2019, 31, 1806774.

[5]
Tan, M. L.; Hu, C.; Lan, Y.; Khan, J.; Deng, H.; Yang, X. K.; Wang, P. X.; Yu, X. X.; Lai, J. J.; Song, H. S. 2D lead dihalides for high-performance ultraviolet photodetectors and their detection mechanism investigation. Small 2017 , 13, 1702024.
DOI
[6]

Fan, W. D.; Peh, S. B.; Zhang, Z. Q.; Yuan, H. Y.; Yang, Z. Q.; Wang, Y. X.; Chai, K. G.; Sun, D. F.; Zhao, D. Tetrazole-functionalized zirconium metal-organic cages for efficient C2H2/C2H4 and C2H2/CO2 separations. Angew. Chem., Int. Ed. 2021, 60, 17338–17343.

[7]

Andrés, M. A.; Carné-Sánchez, A.; Sánchez-Laínez, J.; Roubeau, O.; Coronas, J.; Maspoch, D.; Gascón, I. Ultrathin films of porous metal-organic polyhedra for gas separation. Chem. —Eur. J. 2020, 26, 143–147.

[8]

Ghosh, A. C.; Legrand, A.; Rajapaksha, R.; Craig, G. A.; Sassoye, C.; Balázs, G.; Farrusseng, D.; Furukawa, S.; Canivet, J.; Wisser, F. M. Rhodium-based metal-organic polyhedra assemblies for selective CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 3626–3636.

[9]

Gan, H. M.; Qin, C.; Zhao, L.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Self-assembled polyoxometalate-based metal-organic polyhedra as an effective heterogeneous catalyst for oxidation of sulfide. Cryst. Growth Des. 2021, 21, 1028–1034.

[10]

Gan, H. M.; Xu, N.; Qin, C.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Equi-size nesting of platonic and archimedean metal-organic polyhedra into a twin capsid. Nat. Commun. 2020, 11, 4103.

[11]

Jayapaul, J.; Komulainen, S.; Zhivonitko, V. V.; Mareš, J.; Giri, C.; Rissanen, K.; Lantto, P.; Telkki, V. V.; Schröder, L. Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics. Nat. Commun. 2022, 13, 1708.

[12]

Kondinski, A.; Menon, A.; Nurkowski, D.; Farazi, F.; Mosbach, S.; Akroyd, J.; Kraft, M. Automated rational design of metal-organic polyhedra. J. Am. Chem. Soc. 2022, 144, 11713–11728.

[13]

Zhang, M. X.; Lai, Y. Y.; Li, M.; Hong, T.; Wang, W. Y.; Yu, H. T.; Li, L. W.; Zhou, Q. J.; Ke, Y. B.; Zhan, X. Z. et al. The microscopic structure-property relationship of metal-organic polyhedron nanocomposites. Angew. Chem., Int. Ed. 2019, 58, 17412–17417.

[14]

Mollick, S.; Mukherjee, S.; Kim, D.; Qiao, Z. W.; Desai, A. V.; Saha, R.; More, Y. D.; Jiang, J. W.; Lah, M. S.; Ghosh, S. K. Hydrophobic shielding of outer surface: Enhancing the chemical stability of metal-organic polyhedra. Angew. Chem., Int. Ed. 2019, 58, 1041–1045.

[15]

Augustyniak, A. W.; Fandzloch, M.; Domingo, M.; Łakomska, I.; Navarro, J. A. R. A vanadium(IV) pyrazolate metal-organic polyhedron with permanent porosity and adsorption selectivity. Chem. Commun. 2015, 51, 14724–14727.

[16]

Luo, Y.; Ying, S. W.; Li, S. J.; Li, L. K.; Li, H. Y.; Asad, M.; Zang, S. Q.; Mak, T. C. W. Photo/electrochromic dual responsive behavior of a cage-like Zr(IV)-viologen metal-organic polyhedron (MOP). Inorg. Chem. 2022, 61, 2813–2823.

[17]

Bae, J.; Baek, K.; Yuan, D. Q.; Kim, W.; Kim, K.; Zhou, H. C.; Park, J. Reversible photoreduction of Cu(II)-coumarin metal-organic polyhedra. Chem. Commun. 2017, 53, 9250–9253.

[18]

Murase, T.; Sato, S.; Fujita, M. Switching the interior hydrophobicity of a self-assembled spherical complex through the photoisomerization of confined azobenzene chromophores. Angew. Chem., Int. Ed. 2007, 46, 5133–5136.

[19]

Park, J.; Sun, L. B.; Chen, Y. P.; Perry, Z.; Zhou, H. C. Azobenzene-functionalized metal-organic polyhedra for the optically responsive capture and release of guest molecules. Angew. Chem., Int. Ed. 2014, 53, 5842–5846.

[20]

Han, M. X.; Michel, R.; He, B. C.; Chen, Y. S.; Stalke, D.; John, M.; Clever, G. H. Light-triggered guest uptake and release by a photochromic coordination cage. Angew. Chem., Int. Ed. 2013, 52, 1319–1323.

[21]

Li, R. J.; Han, M. X.; Tessarolo, J.; Holstein, J. J.; Lübben, J.; Dittrich, B.; Volkmann, C.; Finze, M.; Jenne, C.; Clever, G. H. Successive photoswitching and derivatization effects in photochromic dithienylethene-based coordination cages. ChemPhotoChem 2019, 3, 378–383.

[22]

Mollick, S.; Fajal, S.; Mukherjee, S.; Ghosh, S. K. Stabilizing metal-organic polyhedra (MOP): Issues and strategies. Chem. —Asian J. 2019, 14, 3096–3108.

[23]

Qiu, X.; Zhong, W.; Bai, C. H.; Li, Y. W. Encapsulation of a metal-organic polyhedral in the pores of a metal-organic framework. J. Am. Chem. Soc. 2016, 138, 1138–1141.

[24]

Sun, M.; Wang, Q. Q.; Qin, C.; Sun, C. Y.; Wang, X. L.; Su, Z. M. An amine-functionalized zirconium metal-organic polyhedron photocatalyst with high visible-light activity for hydrogen production. Chem. —Eur. J. 2019, 25, 2824–2830.

[25]

Jiang, Y.; Tan, P.; Qi, S. C.; Gu, C.; Peng, S. S.; Wu, F.; Liu, X. Q.; Sun, L. B. Breathing metal-organic polyhedra controlled by light for carbon dioxide capture and liberation. CCS Chem. 2021, 3, 1659–1668.

[26]

Jiang, Y.; Park, J.; Tan, P.; Feng, L.; Liu, X. Q.; Sun, L. B.; Zhou, H. C. Maximizing photoresponsive efficiency by isolating metal-organic polyhedra into confined nanoscaled spaces. J. Am. Chem. Soc. 2019, 141, 8221–8227.

[27]

Lal, G.; Derakhshandeh, M.; Akhtar, F.; Spasyuk, D. M.; Lin, J. B.; Trifkovic, M.; Shimizu, G. K. H. Mechanical properties of a metal-organic framework formed by covalent cross-linking of metal-organic polyhedra. J. Am. Chem. Soc. 2019, 141, 1045–1053.

[28]

Iqbal, M.; Ahmad, I.; Ali, S.; Muhammad, N.; Ahmed, S.; Sohail, M. Dimeric “paddle-wheel” carboxylates of copper(II): Synthesis, crystal structure and electrochemical studies. Polyhedron 2013, 50, 524–531.

[29]

Zhao, D.; Tan, S. W.; Yuan, D. Q.; Lu, W. G.; Rezenom, Y. H.; Jiang, H. L.; Wang, L. Q.; Zhou, H. C. Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. Adv. Mater. 2011, 23, 90–93.

[30]

Liu, J. T.; Wang, S. F.; Huang, T. F.; Manchanda, P.; Abou-Hamad, E.; Nunes, S. P. Smart covalent organic networks (CONs) with “on-off-on” light-switchable pores for molecular separation. Sci. Adv. 2020, 6, eabb3188.

[31]

Wang, S. Y.; Yang, Q. Y.; Zhong, C. L. Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study. Sep. Purif. Technol. 2008, 60, 30–35.

[32]

Musa, S. G.; Aljunid Merican, Z. M.; Haruna, A. Investigation of isotherms and isosteric heat of adsorption for PW11@HKUST-1 composite. J. Solid State Chem. 2022, 314, 123363.

[33]

Kim, K. C.; Lee, C. Y.; Fairen-Jimenez, D.; Nguyen, S. T.; Hupp, J. T.; Snurr, R. Q. Computational study of propylene and propane binding in metal-organic frameworks containing highly exposed Cu+ or Ag+ cations. J. Phys. Chem. C 2014, 118, 9086–9092.

[34]

Huang, R. H.; Hill, M. R.; Babarao, R.; Medhekar, N. V. CO2 adsorption in azobenzene functionalized stimuli responsive metal-organic frameworks. J. Phys. Chem. C 2016, 120, 16658–16667.

File
12274_2024_6465_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2023
Revised: 24 December 2023
Accepted: 01 January 2024
Published: 07 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2022YFB3806800), the National Science Fund for Distinguished Young Scholars (No. 22125804), the National Natural Science Foundation of China (No. 22078155), and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions.

Return