AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Catalytic anode surface enabling in situ polymerization of gel polymer electrolyte for stable Li metal batteries

Guocheng Li1,§Kang Liang2,§Yuanjian Li1Xiangrui Duan1Lin Fu1Zhao Cai3Zhaofu Zhang2Jiangnan Dai1Yongming Sun1( )
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
The Institute of Technological Sciences, Wuhan University, Wuhan 430074, China
Faculty of Materials Science and Chemistry, China University of Geoscience (Wuhan), Wuhan 430074, China

§ Guocheng Li and Kang Liang contributed equally to this work.

Show Author Information

Graphical Abstract

A new design of composite Li metal foil was proposed, which can in situ catalyze the polymerization of gel polymer electrolyte (GPE) on its surface, and synchronously eliminate the anode volume change and realize low interphase resistance between electrolyte and anode during charge/discharge cycling processes. The as-designed electrode/GPE integrity exhibited stable electrode structure and significantly improved electrochemical performance in full cells.

Abstract

Employing quasi-solid-state gel polymer electrolyte (GPE) instead of the liquid counterpart has been regarded as a promising strategy for improving the electrochemical performance of Li metal batteries. However, the poor and uneven interfacial contact between Li metal anode and GPE could cause large interfacial resistance and electrochemical Li stripping/plating inhomogeneity, deteriorating the electrochemical performance. Herein, we proposed that the functional component of composite anode could work as the catalyst to promote the in situ polymerization reaction, and we experimentally realized the integration of polymerized-dioxolane electrolyte and Li/Li22Sn5/LiF composite electrode with low interfacial resistance and good stability by in situ catalyzation polymerization. Thus, the reaction kinetics and stability of metallic Li anode were significantly enhanced. As a demonstration, symmetric cell using such a GPE-Li/Li22Sn5/LiF integration achieved stable cycling beyond 250 cycles with small potential hysteresis of 25 mV at 1 mA·cm−2 and 1 mAh·cm−2, far outperforming the counterpart regular GPE on pure Li. Paired with LiNi0.5Co0.3Mn0.2O2, the full cell with the GPE-Li/Li22Sn5/LiF integration maintained 85.7% of the original capacity after 100 cycles at 0.5 C (1 C = 200 mA·g−1). Our research provides a promising strategy for reducing the resistance between GPE and Li metal anode, and realizes Li metal batteries with enhance electrochemical performance.

Electronic Supplementary Material

Download File(s)
12274_2024_6463_MOESM1_ESM.pdf (2 MB)

References

[1]

Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

[2]

Meng, Y. S.; Srinivasan, V.; Xu, K. Designing better electrolytes. Science 2022, 378, eabq3750.

[3]

Li, M.; Wang, C. S.; Chen, Z. W.; Xu, K.; Lu, J. New concepts in electrolytes. Chem. Rev. 2020, 120, 6783–6819.

[4]

Zhang, Z. L.; Jin, Y.; Zhao, Y.; Xu, J.; Sun, B.; Liu, K.; Lu, H. F.; Lv, N. W.; Dang, Z. M.; Wu, H. Homogenous lithium plating/stripping regulation by a mass-producible Zn particles modified Li-metal composite anode. Nano Res. 2021, 14, 3999–4005.

[5]

Ye, L. H.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593, 218–222.

[6]

Hu, Y. R.; Zhong, Y. R.; Qi, L. M.; Wang, H. L. Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries. Nano Res. 2020, 13, 3230–3234.

[7]

Vu, T. T.; Cheon, H. J.; Shin, S. Y.; Jeong, G.; Wi, E.; Chang, M. Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects. Energy Storage Mater. 2023, 61, 102876.

[8]

Lennartz, P.; Paren, B. A.; Herzog-Arbeitman, A.; Chen, X. C.; Johnson, J. A.; Winter, M.; Shao-Horn, Y.; Brunklaus, G. Practical considerations for enabling Li|polymer electrolyte batteries. Joule 2023, 7, 1471–1495.

[9]

Chen, A. L.; Qian, Y. S.; Zheng, S. J.; Chen, Y. Y.; Ouyang, Y.; Mo, L. L.; Xu, Z. L.; Miao, Y. E.; Liu, T. X. In-situ constructed polymer/alloy composite with high ionic conductivity as an artificial solid electrolyte interphase to stabilize lithium metal anode. Nano Res. 2023, 16, 3888–3894

[10]

Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.

[11]

Xiang, J. W.; Zhang, Y.; Zhang, B.; Yuan, L. X.; Liu, X. T.; Cheng, Z. X.; Yang, Y.; Zhang, X. X.; Li, Z.; Shen, Y. et al. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy Environ. Sci. 2021, 14, 3510–3521.

[12]

Geng, Z.; Huang, Y. L.; Sun, G. C.; Chen, R. S.; Cao, W. Z.; Zheng, J. Y.; Li, H. In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy 2022, 91, 106679

[13]

Liu, F. Q.; Wang, W. P.; Yin, Y. X.; Zhang, S. F.; Shi, J. L.; Wang, L.; Zhang, X. D.; Zheng, Y.; Zhou, J. J.; Li, L. et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 2018, 4, eaat5383.

[14]

Zhao, C. Z.; Zhao, Q.; Liu, X. T.; Zheng, J. X.; Stalin, S.; Zhang, Q.; Archer, L. A. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv. Mater. 2020, 32, 1905629.

[15]

Sarkar, S.; Chen, B. W.; Zhou, C. T.; Shirazi, S. N.; Langer, F.; Schwenzel, J.; Thangadurai, V. Synergistic approach toward developing highly compatible garnet–liquid electrolyte interphase in hybrid solid-state lithium-metal batteries. Adv. Energy Mater. 2023, 13, 2203897.

[16]

Li, W.; Gao, J.; Tian, H. Y.; Li, X. L.; He, S.; Li, J. P.; Wang, W. L.; Li, L.; Li, H.; Qiu, J. S. et al. SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior. Angew. Chem., Int. Ed. 2021, 61, e202114805.

[17]

Li, G. C.; Duan, X. R.; Liu, X. T.; Zhan, R. M.; Wang, X. C.; Du, J. M.; Chen, Z. H.; Li, Y. J.; Cai, Z.; Shen, Y. et al. Locking active Li metal through localized redistribution of fluoride enabling stable Li-metal batteries. Adv. Mater. 2023, 35, 2207310.

[18]

Liu, S. F.; Ji, X.; Yue, J.; Hou, S.; Wang, P. F.; Cui, C. Y.; Chen, J.; Shao, B. W.; Li, J. R.; Han, F. D. et al. High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc. 2020, 142, 2438–2447.

[19]

Wu, C.; Huang, H. F.; Lu, W. Y.; Wei, Z. X.; Ni, X. Y.; Sun, F.; Qing, P.; Liu, Z. J.; Ma, J. M.; Wei, W. F. et al. Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries. Adv. Sci. 2020, 7, 1902643.

[20]

Wang, J. X.; Ye, Y. D.; Zhou, H. M.; Zhang, W.; Sun, Z. W.; Zhu, J. W.; Jin, H. C.; Xie, H. Y.; Huang, H. L.; Cui, Y. et al. Regulating Li transport in Li-magnesium alloy for dendrite free Li metal anode. Nano Res. 2023, 16, 8338–8344.

[21]

Gao, J. L.; Chen, C. J.; Dong, Q.; Dai, J. Q.; Yao, Y. G.; Li, T. Y.; Rundlett, A.; Wang, R. L.; Wang, C. W.; Hu, L. B. Stamping flexible Li alloy anodes. Adv. Mater. 2021, 33, 2005305.

[22]

Jiang, F. N.; Yang, S. J.; Cheng, X. B.; Yuan, H.; Liu, L.; Huang, J. Q.; Zhang, Q. An interface-contact regulation renders thermally safe lithium metal batteries. eTransportation 2023, 15, 100211.

[23]

Liu, M.; Zhang, J. F.; Sun, Z.; Huang, L.; Xie, T.; Wang, X. W.; Wang, D.; Wu, Y. P. Dual mechanism for sodium based energy storage. Small 2023, 19, 2206922.

[24]

Li, G. C.; Yang, Q. P.; Chao, J. L.; Zhang, B.; Wan, M. T.; Liu, X. X.; Mao, E. Y.; Wang, L.; Yang, H.; Seh, Z. W. et al. Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite. Energy Storage Mater. 2021, 35, 310–316.

[25]

Li, Y. J.; Mao, E. Y.; Min, Z. W.; Cai, Z.; Chen, Z. H.; Fu, L.; Duan, X. R.; Wang, L. Y.; Zhang, C.; Lu, Z. H. et al. Hybrid polymer-alloy-fluoride interphase enabling fast ion transport kinetics for low-temperature lithium metal batteries. ACS Nano 2023, 19, 19459–19469.

[26]

Zhang, N.; Li, J.; Li, H. Y.; Liu, A.; Huang, Q.; Ma, L.; Li, Y.; Dahn, J. R. Structural, electrochemical, and thermal properties of nickel-rich LiNi x Mn y Co z O2 materials. Chem. Mater. 2018, 30, 8852–8860.

[27]

Liang, J. Y.; Zhang, X. D.; Zhang, Y.; Huang, L. B.; Yan, M.; Shen, Z. Z.; Wen, R.; Tang, J. L.; Wang, F. Y.; Shi, J. L. et al. Cooperative shielding of Bi-electrodes via in situ amorphous electrode–electrolyte interphases for practical high-energy lithium-metal batteries. J. Am. Chem. Soc. 2021, 143, 16768–16776.

[28]

He, Y. F.; Zhang, M. Y.; Wang, A. P.; Zhang, B.; Pham, H.; Hu, Q.; Sheng, L.; Xu, H.; Wang, L.; Park, J. et al. Regulation of dendrite-free Li plating via lithiophilic sites on lithium−alloy surface. ACS Appl. Mater. Interfaces 2022, 14, 33952–33959.

[29]

Li, Y. J.; Feng, X.; Lieu, W. Y.; Fu, L.; Zhang, C.; Ghosh, T.; Thakur, A.; Wyatt, B. C.; Anasori, B.; Liu, W. et al. MXene-based anode-free magnesium metal battery. Adv. Funct. Mater. 2023, 33, 2303067.

[30]

Shi, Y. C.; Fu, J. P.; Hui, K. L.; Liu, J.; Gao, C.; Chang, S. Q.; Chen, Y. J.; Gao, X.; Gao, T.; Qu, L. G. et al. Promoting the electrochemical properties of yolk–shell-structured CeO2 composites for lithium-ion batteries. Microstructures 2021, 1, 2021005.

Nano Research
Pages 5216-5223
Cite this article:
Li G, Liang K, Li Y, et al. Catalytic anode surface enabling in situ polymerization of gel polymer electrolyte for stable Li metal batteries. Nano Research, 2024, 17(6): 5216-5223. https://doi.org/10.1007/s12274-024-6463-2
Topics:

740

Views

3

Crossref

2

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 12 November 2023
Revised: 28 December 2023
Accepted: 02 January 2024
Published: 01 February 2024
© Tsinghua University Press 2024
Return