Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Employing quasi-solid-state gel polymer electrolyte (GPE) instead of the liquid counterpart has been regarded as a promising strategy for improving the electrochemical performance of Li metal batteries. However, the poor and uneven interfacial contact between Li metal anode and GPE could cause large interfacial resistance and electrochemical Li stripping/plating inhomogeneity, deteriorating the electrochemical performance. Herein, we proposed that the functional component of composite anode could work as the catalyst to promote the in situ polymerization reaction, and we experimentally realized the integration of polymerized-dioxolane electrolyte and Li/Li22Sn5/LiF composite electrode with low interfacial resistance and good stability by in situ catalyzation polymerization. Thus, the reaction kinetics and stability of metallic Li anode were significantly enhanced. As a demonstration, symmetric cell using such a GPE-Li/Li22Sn5/LiF integration achieved stable cycling beyond 250 cycles with small potential hysteresis of 25 mV at 1 mA·cm−2 and 1 mAh·cm−2, far outperforming the counterpart regular GPE on pure Li. Paired with LiNi0.5Co0.3Mn0.2O2, the full cell with the GPE-Li/Li22Sn5/LiF integration maintained 85.7% of the original capacity after 100 cycles at 0.5 C (1 C = 200 mA·g−1). Our research provides a promising strategy for reducing the resistance between GPE and Li metal anode, and realizes Li metal batteries with enhance electrochemical performance.
Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.
Meng, Y. S.; Srinivasan, V.; Xu, K. Designing better electrolytes. Science 2022, 378, eabq3750.
Li, M.; Wang, C. S.; Chen, Z. W.; Xu, K.; Lu, J. New concepts in electrolytes. Chem. Rev. 2020, 120, 6783–6819.
Zhang, Z. L.; Jin, Y.; Zhao, Y.; Xu, J.; Sun, B.; Liu, K.; Lu, H. F.; Lv, N. W.; Dang, Z. M.; Wu, H. Homogenous lithium plating/stripping regulation by a mass-producible Zn particles modified Li-metal composite anode. Nano Res. 2021, 14, 3999–4005.
Ye, L. H.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593, 218–222.
Hu, Y. R.; Zhong, Y. R.; Qi, L. M.; Wang, H. L. Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries. Nano Res. 2020, 13, 3230–3234.
Vu, T. T.; Cheon, H. J.; Shin, S. Y.; Jeong, G.; Wi, E.; Chang, M. Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects. Energy Storage Mater. 2023, 61, 102876.
Lennartz, P.; Paren, B. A.; Herzog-Arbeitman, A.; Chen, X. C.; Johnson, J. A.; Winter, M.; Shao-Horn, Y.; Brunklaus, G. Practical considerations for enabling Li|polymer electrolyte batteries. Joule 2023, 7, 1471–1495.
Chen, A. L.; Qian, Y. S.; Zheng, S. J.; Chen, Y. Y.; Ouyang, Y.; Mo, L. L.; Xu, Z. L.; Miao, Y. E.; Liu, T. X. In-situ constructed polymer/alloy composite with high ionic conductivity as an artificial solid electrolyte interphase to stabilize lithium metal anode. Nano Res. 2023, 16, 3888–3894
Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.
Xiang, J. W.; Zhang, Y.; Zhang, B.; Yuan, L. X.; Liu, X. T.; Cheng, Z. X.; Yang, Y.; Zhang, X. X.; Li, Z.; Shen, Y. et al. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy Environ. Sci. 2021, 14, 3510–3521.
Geng, Z.; Huang, Y. L.; Sun, G. C.; Chen, R. S.; Cao, W. Z.; Zheng, J. Y.; Li, H. In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy 2022, 91, 106679
Liu, F. Q.; Wang, W. P.; Yin, Y. X.; Zhang, S. F.; Shi, J. L.; Wang, L.; Zhang, X. D.; Zheng, Y.; Zhou, J. J.; Li, L. et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 2018, 4, eaat5383.
Zhao, C. Z.; Zhao, Q.; Liu, X. T.; Zheng, J. X.; Stalin, S.; Zhang, Q.; Archer, L. A. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv. Mater. 2020, 32, 1905629.
Sarkar, S.; Chen, B. W.; Zhou, C. T.; Shirazi, S. N.; Langer, F.; Schwenzel, J.; Thangadurai, V. Synergistic approach toward developing highly compatible garnet–liquid electrolyte interphase in hybrid solid-state lithium-metal batteries. Adv. Energy Mater. 2023, 13, 2203897.
Li, W.; Gao, J.; Tian, H. Y.; Li, X. L.; He, S.; Li, J. P.; Wang, W. L.; Li, L.; Li, H.; Qiu, J. S. et al. SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior. Angew. Chem., Int. Ed. 2021, 61, e202114805.
Li, G. C.; Duan, X. R.; Liu, X. T.; Zhan, R. M.; Wang, X. C.; Du, J. M.; Chen, Z. H.; Li, Y. J.; Cai, Z.; Shen, Y. et al. Locking active Li metal through localized redistribution of fluoride enabling stable Li-metal batteries. Adv. Mater. 2023, 35, 2207310.
Liu, S. F.; Ji, X.; Yue, J.; Hou, S.; Wang, P. F.; Cui, C. Y.; Chen, J.; Shao, B. W.; Li, J. R.; Han, F. D. et al. High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc. 2020, 142, 2438–2447.
Wu, C.; Huang, H. F.; Lu, W. Y.; Wei, Z. X.; Ni, X. Y.; Sun, F.; Qing, P.; Liu, Z. J.; Ma, J. M.; Wei, W. F. et al. Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries. Adv. Sci. 2020, 7, 1902643.
Wang, J. X.; Ye, Y. D.; Zhou, H. M.; Zhang, W.; Sun, Z. W.; Zhu, J. W.; Jin, H. C.; Xie, H. Y.; Huang, H. L.; Cui, Y. et al. Regulating Li transport in Li-magnesium alloy for dendrite free Li metal anode. Nano Res. 2023, 16, 8338–8344.
Gao, J. L.; Chen, C. J.; Dong, Q.; Dai, J. Q.; Yao, Y. G.; Li, T. Y.; Rundlett, A.; Wang, R. L.; Wang, C. W.; Hu, L. B. Stamping flexible Li alloy anodes. Adv. Mater. 2021, 33, 2005305.
Jiang, F. N.; Yang, S. J.; Cheng, X. B.; Yuan, H.; Liu, L.; Huang, J. Q.; Zhang, Q. An interface-contact regulation renders thermally safe lithium metal batteries. eTransportation 2023, 15, 100211.
Liu, M.; Zhang, J. F.; Sun, Z.; Huang, L.; Xie, T.; Wang, X. W.; Wang, D.; Wu, Y. P. Dual mechanism for sodium based energy storage. Small 2023, 19, 2206922.
Li, G. C.; Yang, Q. P.; Chao, J. L.; Zhang, B.; Wan, M. T.; Liu, X. X.; Mao, E. Y.; Wang, L.; Yang, H.; Seh, Z. W. et al. Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite. Energy Storage Mater. 2021, 35, 310–316.
Li, Y. J.; Mao, E. Y.; Min, Z. W.; Cai, Z.; Chen, Z. H.; Fu, L.; Duan, X. R.; Wang, L. Y.; Zhang, C.; Lu, Z. H. et al. Hybrid polymer-alloy-fluoride interphase enabling fast ion transport kinetics for low-temperature lithium metal batteries. ACS Nano 2023, 19, 19459–19469.
Zhang, N.; Li, J.; Li, H. Y.; Liu, A.; Huang, Q.; Ma, L.; Li, Y.; Dahn, J. R. Structural, electrochemical, and thermal properties of nickel-rich LiNi x Mn y Co z O2 materials. Chem. Mater. 2018, 30, 8852–8860.
Liang, J. Y.; Zhang, X. D.; Zhang, Y.; Huang, L. B.; Yan, M.; Shen, Z. Z.; Wen, R.; Tang, J. L.; Wang, F. Y.; Shi, J. L. et al. Cooperative shielding of Bi-electrodes via in situ amorphous electrode–electrolyte interphases for practical high-energy lithium-metal batteries. J. Am. Chem. Soc. 2021, 143, 16768–16776.
He, Y. F.; Zhang, M. Y.; Wang, A. P.; Zhang, B.; Pham, H.; Hu, Q.; Sheng, L.; Xu, H.; Wang, L.; Park, J. et al. Regulation of dendrite-free Li plating via lithiophilic sites on lithium−alloy surface. ACS Appl. Mater. Interfaces 2022, 14, 33952–33959.
Li, Y. J.; Feng, X.; Lieu, W. Y.; Fu, L.; Zhang, C.; Ghosh, T.; Thakur, A.; Wyatt, B. C.; Anasori, B.; Liu, W. et al. MXene-based anode-free magnesium metal battery. Adv. Funct. Mater. 2023, 33, 2303067.
Shi, Y. C.; Fu, J. P.; Hui, K. L.; Liu, J.; Gao, C.; Chang, S. Q.; Chen, Y. J.; Gao, X.; Gao, T.; Qu, L. G. et al. Promoting the electrochemical properties of yolk–shell-structured CeO2 composites for lithium-ion batteries. Microstructures 2021, 1, 2021005.