AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A high-performance electrocatalyst for oxygen reduction derived from copolymer-anchored polyoxometalates

Yue Du1( )Wenxue Chen1Zhiyi Zhong1Zhixian Shi1Yulin Zhang2Xuanning Chen2Yisi Liu1Dongbin Xiong1Lina Zhou1( )Zhenhui Liu2Mingbo Zheng2( )
Hubei Key Laboratory of Photoelectric Materials and Devices & College of Material Science and Engineering, Hubei Normal University, Huangshi 435002, China
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Show Author Information

Graphical Abstract

A high-performance three-dimensional (3D) N,P-doped carbon coated W3N4-WP heterostructure electrocatalyst for oxygen reduction has been fabricated by copolymer-anchored polyoxometalates through a novel in-situ nitriding and phosphating strategy.

Abstract

The development and synthesis of cathode electrocatalysts with high activity and durable stability for metal-air batteries is an important challenge in the area of electrocatalysis. Herein, we introduce a novel in-situ nitriding and phosphating strategy for producing W3N4 and WP from phosphotungstic acid (HPW)-polyaniline-phytic acid-Fe3+ organic–inorganic hybrid material. The final material has a three-dimensional porous framework with W3N4-WP heterostructures embedded in the carbon matrix (W3N4-WP@NPC). As-made materials exhibit exceptional electrocatalytic performance for the oxygen reduction reaction (ORR), with a diffusion-limiting current density of 6.9 mA·cm−2 and a half-wave potential of 0.82 V. As a Zn-air primary cathode, the W3N4-WP@NPC assembled battery can provide a relatively high peak power density (194.2 mW·cm−2). As a Zn-air secondary air-cathode, it has great cycling stability over 500 h. This work provides a simple and efficient method for rationally designing high-performance air cathodes from copolymer-anchored polyoxometalates.

Electronic Supplementary Material

Download File(s)
12274_2024_6459_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Cao, W. Z.; Zhang, J. N.; Li, H. Batteries with high theoretical energy densities. Energy Storage Mater. 2020, 26, 46–55.

[2]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[3]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[4]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624

[5]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem. Int. Ed. 2022, 61, e202213318.

[6]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem. Int. Ed. 2023, 62, e202213318.

[7]

Chen, Y. H.; Xu, J. J.; He, P.; Qiao, Y.; Guo, S. H.; Yang, H. J.; Zhou, H. S. Metal-air batteries: Progress and perspective. Sci. Bull. 2022, 67, 2449–2486.

[8]

Ma, R. G.; Lin, G. X.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G. C.; Yang, M. H.; Wang, J. C. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput. Mater. 2019, 5, 78.

[9]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z.; Wang, J.; Sun, S. G.; Wang, D. S. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem. Int. Ed. 2022, 61, e202115735.

[10]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. Y.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-Air battery. Angew. Chem. Int. Ed. 2023, 62, e202219191.

[11]

Lin, Z. X.; Richardson, J. J.; Zhou, J. J.; Caruso, F. Direct synthesis of amorphous coordination polymers and metal-organic frameworks. Nat. Rev. Chem. 2023, 7, 273–286.

[12]

Zhao, W.; Li, P.; Han, K.; Cui, K. X.; Liu, C. R.; Tan, Q. W.; Qu, X. H. Low-temperature and high-voltage Zn-based liquid metal batteries based on multiple redox mechanism. J. Power Sources 2020, 463, 228233.

[13]

Paul, R. J.; Zhai, Q. F.; Roy, A. K.; Dai, L. M. Charge transfer of carbon nanomaterials for efficient metal-free electrocatalysis. Interdiscip. Mater. 2022, 1, 28–50.

[14]

Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

[15]

Leong, K. W.; Wang, Y. F.; Ni, M.; Pan, W. D.; Luo, S. J.; Leung, D. Y. C. Rechargeable Zn-air batteries: Recent trends and future perspectives. Renew. Sustain. Energy Rev. 2022, 154, 111771.

[16]

Wang, C.; Li, J.; Zhou, Z.; Pan, Y. Q.; Yu, Z. X.; Pei, Z. X.; Zhao, S. L.; Wei, L.; Chen, Y. Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem. 2021, 3, 100055.

[17]

Li, T.; Huang, M.; Bai, X.; Wang, Y. X. Metal-air batteries: A review on current status and future applications. Prog. Nat. Sci. Mater. Int. 2023, 33, 151–171.

[18]

Xiong, L. W.; Fu, Y. K.; Luo, Y. X.; Wei, Y. S.; Zhang, Z.; Wu, C. G.; Luo, S. C.; Wang, G.; Sawtell, D.; Xie, K. F. et al. Prospective applications of transition metal-based nanomaterials. J. Mater. Res. 2022, 37, 2109–2123.

[19]

Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem. 2019, 5, 1486–1511.

[20]

Fan, J. T.; Chen, M.; Zhao, Z. L.; Zhang, Z.; Ye, S. Y.; Xu, S. Y.; Wang, H. J.; Li, H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nature Energy. 2021, 6, 475–486.

[21]

Chen, Y.; Qiao, Q. Y.; Gao, J. Z.; Li, H. X.; Bian, Z. F. Precious metal recovery. Joule. 2021, 5, 3097–3115.

[22]

Chen, Y.; Xu, M. J.; Wen, J. Y.; Wan, Y.; Zhao, Q. F.; Cao, X.; Ding, Y.; Wang, Z. L.; Li, H. X.; Bian, Z. F. Selective recovery of precious metals through photocatalysis. Nat. Sustain. 2021, 4, 618–626.

[23]

Zhang, L.; Shao, Q. S.; Zhang, J. J. An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Mater. Rep. Energy. 2021, 1, 100002.

[24]

Yang, Q. Y.; Liu, J. W.; Cai, W. T.; Liang, X.; Zhuang, Z. C.; Liao, T.; Zhang, F. X.; Hu, W. K.; Liu, P. X.; Fan, S. J. et al. Non-heme iron single-atom nanozymes as peroxidase mimics for tumor catalytic therapy. Nano Lett. 2023, 23, 8585–8592.

[25]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[26]

Zhou, S.; Pei, W.; Zhao, Y. Y.; Yang, X. W.; Liu, N. S.; Zhao, J. J. Low-dimensional non-metal catalysts: Principles for regulating p-orbital-dominated reactivity. npj Comput. Mater. 2021, 7, 186.

[27]

Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xu, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.

[28]

Zhang, G. X.; Jin, L.; Zhang, R. X.; Bai, Y.; Zhu, R. M.; Pang, H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord. Chem. Rev. 2021, 439, 213915.

[29]

Chen, P. R.; Ye, J. S.; Wang, H.; Ouyang, L. Z.; Zhu, M. Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting. J. Alloys Compd. 2021, 883, 160833.

[30]

Cao, X. J.; Wang, T. Z.; Jiao, L. F. Transition-metal (Fe, Co, and Ni)-based nanofiber electrocatalysts for water splitting. Adv. Fiber Mater. 2021, 3, 210–228.

[31]

Zhao, L.; Song, M.; Zhu, W. Y.; Zhuang, W. C.; Du, X. H.; Tian, L. MOF-derived hollow heterostructures for advanced electrocatalysis. Coord. Chem. Rev. 2021, 439, 213946.

[32]

Li, Y.; Wu, F.; Qian, J.; Zhang, M. H.; Yuan, Y. X.; Bai, Y.; Wu, C. Metal chalcogenides with heterostructures for high-performance rechargeable batteries. Small Sci. 2021, 1, 2100012.

[33]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano. 2023, 17, 6955–6965.

[34]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[35]

Meng, Z. H.; Zheng, S. H.; Luo, R.; Tang, H. B.; Wang, R.; Zhang, R. M.; Tian, T.; Tang, H. L. Transition metal nitrides for electrocatalytic application: Progress and rational design. Nanomaterials. 2022, 12, 2660.

[36]

Luo, Q.; Lu, C. C.; Liu, L. R.; Zhu, M. Y. A review on the synthesis of transition metal nitride nanostructures and their energy related applications. Green Energy Environ. 2023, 8, 406–437.

[37]

Li, H.; Fan, G.; Cao, L. Y.; Yang, Y.; Yan, X.; Dai, Y. P.; Zhang, G. J.; Wang, J. L. A comprehensive investigation on the design and off-design performance of supercritical carbon dioxide power system based on the small-scale lead-cooled fast reactor. J. Clean. Prod. 2020, 256, 120720.

[38]

Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.

[39]

Zhang, W.; Feng, P.; Chen, J.; Sun, Z. M.; Zhao, B. X. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 2019, 88, 220–240.

[40]

Du, Y.; Chen, W. X.; Zhong, Z. Y.; Wang, S. Z.; Zhou, L. N.; Xiong, D. B.; Liu, Y. S.; Liu, Z. H.; Wang, K. Bifunctional oxygen electrocatalysts with WN@Ni nanostructures implanted on N-doped carbon nanorods for rechargeable Zn-air batteries. J. Alloys Compd. 2023, 960, 170789.

[41]

Du, Y.; Chen, W. X.; Zhou, L. N.; Hu, R.; Wang, S. Z.; Li, X. Q.; Xie, Y. L.; Yang, L.; Liu, Y. S.; Liu, Z. H. One-step, in situ formation of WN-W2C heterojunctions implanted on N doped carbon nanorods as efficient oxygen reduction catalyst for metal-air battery. Nano Res. 2023, 16, 8773–8781.

[42]

Liu, Y. S.; Li, Z. X.; Wang, S. Z.; Xuan, J. N.; Xiong, D. B.; Zhou, L. N.; Zhou, J. Q.; Wang, J.; Yang, Y. H.; Du, Y. Hierarchical porous yolk–shell Co-N-C nanocatalysts encaged in graphene nanopockets for high-performance Zn-air battery. Nano Res. 2023, 16, 8893–8901.

[43]

Li, S. J.; Tan, X. P.; Li, H.; Gao, Y.; Wang, Q.; Li, G. N.; Guo, M. Investigation on pore structure regulation of activated carbon derived from sargassum and its application in supercapacitor. Sci. Rep. 2022, 12, 10106.

[44]

Sun, X. P.; Wei, P.; He, Z. M.; Cheng, F. Y.; Tang, L.; Li, Q.; Han, J. T.; He, J. H. Novel transition-metal phosphides@N,P-codoped carbon electrocatalysts synthesized via a universal strategy for overall water splitting. J. Alloys Compd. 2023, 932, 167253.

[45]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem. 2019, 6, 3570–3589.

[46]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[47]

Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; Xie, Y. L.; Du, Y.; Xuan, J, N.; Xiong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy. 2022, 99, 107325.

[48]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter. 2021, 4, 3161–3194.

[49]

Wang, Y.; Zheng, M.; Li, Y. R.; Chen, J.; Ye, C. L.; Li, S.; Wang, J.; Zhu, Y. F.; Sun, S. G.; Wang, D. S. Oxygen-bridged long-range dual sites boost ethanol electrooxidation by facilitating C–C bond vleavage. Nano Lett. 2023, 23, 8194–8202.

[50]

Wang, P.; Zhang, Z. C. Y.; Song, N.; An, X. G.; Liu, J.; Feng, J. K.; Xi, B. J.; Xiong, S. L. WP nanocrystals on N,P dual-doped carbon nanosheets with deeply analyzed catalytic mechanisms for lithium-sulfur batteries. CCS Chem. 2023, 5, 397–411.

[51]

Nkosi, F. P.; Raju, K.; Palaniyandy, N.; Reddy, M. V.; Billing, C.; Ozoemena, K. I. Insights into the synergistic roles of microwave and fluorination treatments towards enhancing the cycling stability of P2-type Na0.67[Mg0.28Mn0.72]O2 cathode material for sodium-ion batteries. J. Electrochem. Soc. 2017, 164, A3362–A3370.

[52]

Liu, D. M.; Yi, W. C.; Fu, Y. L.; Kong, Q. H.; Xi, G. C. In situ surface restraint-induced synthesis of transition-metal nitride ultrathin nanocrystals as ultrasensitive SERS substrate with ultrahigh durability. ACS Nano. 2022, 16, 13123–13133

[53]

Du, H. F.; Du, Z. Z.; Wang, T. F.; He, S.; Yang, K.; Wang, K.; Xie, L. H.; Ai, W.; Huang, W. Interface engineering of tungsten carbide/phosphide heterostructures anchored on N,P-codoped carbon for high-efficiency hydrogen evolution reaction. Sci. China Mater. 2022, 65, 967–973.

[54]

Yu, C.; Du, Y.; He, R. H.; Ma, Y.; Liu, Z. H.; Li, X. Y.; Luo, W.; Zhou, L.; Mai, L. Q. Hollow SiO x /C microspheres with semigraphitic carbon coating as the “lithium host” for dendrite-free lithium metal anodes. ACS Appl. Energy Mater. 2021, 4, 3905–3912.

[55]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

Nano Research
Pages 5197-5205
Cite this article:
Du Y, Chen W, Zhong Z, et al. A high-performance electrocatalyst for oxygen reduction derived from copolymer-anchored polyoxometalates. Nano Research, 2024, 17(6): 5197-5205. https://doi.org/10.1007/s12274-024-6459-y
Topics:

473

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 December 2023
Revised: 25 December 2023
Accepted: 28 December 2023
Published: 27 February 2024
© Tsinghua University Press 2024
Return