Journal Home > Volume 17 , Issue 6

Double-site catalysts have attracted widespread attention in the field of electrocatalysis due to their high metal loading, adjustable active centres, and electronic valence states. However, the development of bimetallic sites catalysts that coordinate with definite atoms is still in the exploratory stage. Here, we designed and synthesized a bimetallic palladium complex (BPB-Pd2) with conjugated backbone. The supported BPB-Pd2 was applied to electrochemical CO2 reduction reaction (CO2RR) for the first time. The as-obtained BPB-Pd2 gives an exceptional Faradaic efficiency of CO (FECO) of 94.4% at −0.80 V vs. reversible hydrogen electrode (RHE), which is significantly superior to monoatomic palladium catalyst (BPB-Pd1). The density functional theory (DFT) calculations revealed that the essential reason for the outstanding activity of BPB-Pd2 toward CO2RR was that the electronic effect between diatomic palladium reduces the free energy change for CO2RR process. Thus, BPB-Pd2 exhibits moderate free energy change to form COOH* intermediate, which was beneficial for the generation of CO in CO2RR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Diatomic Pd catalyst with conjugated backbone for synergistic electrochemical CO2 reduction

Show Author's information Wenxuan Zhang1Mengran Zhang1Hongjuan Wang1( )Wen Zhang2( )Min Zhang1,2
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China

Abstract

Double-site catalysts have attracted widespread attention in the field of electrocatalysis due to their high metal loading, adjustable active centres, and electronic valence states. However, the development of bimetallic sites catalysts that coordinate with definite atoms is still in the exploratory stage. Here, we designed and synthesized a bimetallic palladium complex (BPB-Pd2) with conjugated backbone. The supported BPB-Pd2 was applied to electrochemical CO2 reduction reaction (CO2RR) for the first time. The as-obtained BPB-Pd2 gives an exceptional Faradaic efficiency of CO (FECO) of 94.4% at −0.80 V vs. reversible hydrogen electrode (RHE), which is significantly superior to monoatomic palladium catalyst (BPB-Pd1). The density functional theory (DFT) calculations revealed that the essential reason for the outstanding activity of BPB-Pd2 toward CO2RR was that the electronic effect between diatomic palladium reduces the free energy change for CO2RR process. Thus, BPB-Pd2 exhibits moderate free energy change to form COOH* intermediate, which was beneficial for the generation of CO in CO2RR.

Keywords: synthesis, electrocatalysis, CO2 reduction, synergistic catalysis, bimetallic palladium complex

References(44)

[1]

Sanz-Pérez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 2016, 116, 11840–11876.

[2]

Gong, M. Y.; Cao, C. S.; Zhu, Q. L. Paired electrosynthesis design strategy for sustainable CO2 conversion and product upgrading. EnergyChem 2023, 5, 100111.

[3]

Zhao, R. Y.; Wang, T.; Li, J. J.; Shi, Y. X.; Hou, M.; Yang, Y.; Zhang, Z. C.; Lei, S. B. Two-dimensional covalent organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Nano Res. 2023, 16, 8570–8595.

[4]

Gao, Z. Q.; Gong, Y.; Zhu, Y. T.; Li, J. J.; Li, L.; Shi, Y. X.; Hou, M.; Gao, X. J.; Zhang, Z. C.; Hu, W. P. Large π-conjugated indium-based metal-organic frameworks for high-performance electrochemical conversion of CO2. Nano Res. 2023, 16, 8743–8750.

[5]

Han, S. G.; Zhang, M.; Fu, Z. H.; Zheng, L. R.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. Enzyme-inspired microenvironment engineering of a single-molecular heterojunction for promoting concerted electrochemical CO2 reduction. Adv. Mater. 2022, 34, 2202830.

[6]

Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars–van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.

[7]

Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202116068.

[8]

Peng, J. X.; Yang, W. J.; Jia, Z. H.; Jiao, L.; Jiang, H. L. Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 2022, 15, 10063–10069.

[9]

Li, S.; Xu, Y. X.; Wang, H. W.; Teng, B. T.; Liu, Q.; Li, Q. H.; Xu, L. L.; Liu, X. Y.; Lu, J. L. Tuning the CO2 hydrogenation selectivity of rhodium single-atom catalysts on zirconium dioxide with alkali ions. Angew. Chem., Int. Ed. 2023, 62, e202218167.

[10]

Zhang, J.; Huang, Q. A.; Wang, J.; Wang, J.; Zhang, J. J.; Zhao, Y. F. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798.

[11]

Zhang, W. Y.; Chao, Y. G.; Zhang, W. S.; Zhou, J. H.; Lv, F.; Wang, K.; Lin, F. X.; Luo, H.; Li, J.; Tong, M. P. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 33, 2102576.

[12]

He, Q.; Liu, D. B.; Lee, J. H.; Liu, Y. M.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 3033–3037.

[13]

Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-bridged Co-N-Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.

[14]

Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

[15]

Cheng, H. Y.; Wu, X. M.; Feng, M. M.; Li, X. C.; Lei, G. P.; Fan, Z. H.; Pan, D. W.; Cui, F. J.; He, G. H. Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction. ACS Catal. 2021, 11, 12673–12681.

[16]

Zhao, X. Y.; Zhao, K.; Liu, Y. M.; Su, Y.; Chen, S.; Yu, H. T.; Quan, X. Highly efficient electrochemical CO2 reduction on a precise homonuclear diatomic Fe-Fe catalyst. ACS Catal. 2022, 12, 11412–11420.

[17]

Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W.; He, H.; Zhou, K. B. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B: Enviorn., 2020, 268, 118747.

[18]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[19]

Hou, C. C.; Wang, H. F.; Li, C. X.; Xu, Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693.

[20]

Xie, W. F.; Li, H.; Cui, G. Q.; Li, J. B.; Song, Y. K.; Li, S. J.; Zhang, X.; Lee, J. Y.; Shao, M. F.; Wei, M. NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7382–7388.

[21]

Feng, M. M.; Wu, X. M.; Cheng, H. Y.; Fan, Z. H.; Li, X. C.; Cui, F. J.; Fan, S.; Dai, Y.; Lei, G. P.; He, G. H. Well-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction. J. Mater. Chem. A 2021, 9, 23817–23827.

[22]

Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 2010, 327, 313–315.

[23]

Machan, C. W.; Yin, J.; Chabolla, S. A.; Gilson, M. K.; Kubiak, C. P. Improving the efficiency and activity of electrocatalysts for the reduction of CO2 through supramolecular assembly with amino acid-modified ligands. J. Am. Chem. Soc. 2016, 138, 8184–8193.

[24]

Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution. Angew. Chem., Int. Ed. 2017, 56, 738–743.

[25]

Guo, Z. G.; Chen, G.; Cometto, C.; Ma, B.; Zhao, H. Y.; Groizard, T.; Chen, L. J.; Fan, H. B.; Man, W. L.; Yiu, S. M. et al. Selectivity control of CO versus HCOO production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites. Nat. Catal. 2019, 2, 801–808.

[26]

Zhang, C. J.; Gotico, P.; Guillot, R.; Dragoe, D.; Leibl, W.; Halime, Z.; Aukauloo, A. Bio-inspired bimetallic cooperativity through a hydrogen bonding spacer in CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202214665.

[27]

Hu, M. K.; Wang, N.; Ma, D. D.; Zhu, Q. L. Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level. Nano Res. 2022, 15, 10070–10077.

[28]

Reddu, V.; Sun, L. B.; Li, X. G.; Jin, H. L.; Wang, S.; Wang, X. Highly selective and efficient electroreduction of CO2 in water by quaterpyridine derivative-based molecular catalyst noncovalently tethered to carbon nanotubes. SmartMat 2022, 3, 151–162.

[29]

Jung, M.; Suzaki, Y.; Saito, T.; Shimada, K.; Osakada, K. Pd complexes with trans-chelating ligands composed of two pyridyl groups and rigid π-conjugated backbone. Polyhedron 2012, 40, 168–174.

[30]

Li, Y. R.; Wang, Z. W.; Xia, T.; Ju, H. X.; Zhang, K.; Long, R.; Xu, Q.; Wang, C. M.; Song, L.; Zhu, J. F. et al. Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis. Adv. Mater. 2016, 28, 6959–6965.

[31]

Pan, Q. Y.; Liu, H.; Zhao, Y. J.; Chen, S. Q.; Xue, B.; Kan, X. N.; Huang, X. W.; Liu, J.; Li, Z. B. Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration. ACS Appl. Mater. Interfaces 2019, 11, 2740–2744.

[32]

Yang, L. L.; Wang, H. J.; Wang, J.; Li, Y.; Zhang, W.; Lu, T. B. A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity. J. Mater. Chem. A 2019, 7, 13142–13148.

[33]

Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596–7599.

[34]

Ren, H.; Shao, H.; Zhang, L. J.; Guo, D.; Jin, Q.; Yu, R. B.; Wang, L.; Li, Y. L.; Wang, Y.; Zhao, H. J. et al. A new graphdiyne nanosheet/Pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells. Adv. Energy Mater. 2015, 5, 1500296.

[35]

Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

[36]

Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

[37]

Xu, W. C.; Fan, G. L.; Chen, J. L.; Li, J. H.; Zhang, L.; Zhu, S. L.; Su, X. C.; Cheng, F. Y.; Chen, J. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem., Int. Ed. 2020, 59, 3511–3516.

[38]

Tong, Y. F.; Sun, Z. P.; Wang, J. W.; Huang, W. W.; Zhang, Q. C. Covalent organic framework containing dual redox centers as an efficient anode in Li-ion batteries. SmartMat 2022, 3, 685–694.

[39]

Costentin, C.; Savéant, J. M. Heterogeneous molecular catalysis of electrochemical reactions: Volcano plots and catalytic Tafel plots. ACS Appl. Mater. Interfaces 2017, 9, 19894–19899.

[40]

Ji, H. X.; Zhao, X.; Qiao, Z. H.; Jung, J.; Zhu, Y. W.; Lu, Y. L.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317.

[41]

Ojha, K.; Doblhoff-Dier, K.; Koper, M. T. M. Double-layer structure of the Pt (111)–aqueous electrolyte interface. Proc. Natl. Acad. Sci. USA 2022, 119, e2116016119.

[42]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[43]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[44]

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

File
12274_2024_6458_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 November 2023
Revised: 21 December 2023
Accepted: 28 December 2023
Published: 08 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22275139) and Natural Science Foundation of Tianjin (No. 22JCZDJC00510).

Return