Journal Home > Volume 17 , Issue 6

Fenton reaction centered ferroptosis-apoptosis synergetic therapy has emerged as a promising tumor elimination strategy. However, the low intracellular Fenton level and accumulation of therapeutics at the lesion site greatly limit the efficacy of ferroptosis therapy. To overcome these two bottlenecks, an inhalable metal polyphenol network (MPN)-hybrid liposome, encoded as LDG, was proposed for enhancing the intracellular Fenton reaction level by co-delivering the ferroptosis inducer dihydroartemisinin (DHA) and the ferrous ion (Fe2+) donor MPN. The synthesized LDG had excellent nebulization performance which significantly improved the accumulation in the lungs, about 8.2 times of intravenous injection. In terms of anticancer mechanisms, MPN raised the intracellular level of Fe2+ by constructing iron cycling in the weakly acidic environment of tumors. Triggered by Fe2+, DHA with peroxide-bridge structure underwent a high level of Fenton-like reaction, promoted the production of intracellular reactive oxygen species (ROS) and induced strong ferroptosis while cooperating with apoptosis. LDG exhibited extraordinary antitumor ability in an orthotopic lung tumor model, whose tumor inhibition efficiency was 1.53 (P = 0.0014) and 1.32 (P = 0.0183) times of the LG group (liposomes coated with gallic acid (GA)-Fe MPN) and LD group (liposomes loaded with DHA), respectively, showing the strongest anticancer effect. In conclusion, the constructed MPN-hybrid liposomes could be a potent custom nanoplatform for pulmonary delivery and underscored the great potential of ferroptosis-apoptosis synergetic therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Inhalable iron redox cycling powered nanoreactor for amplified ferroptosis-apoptosis synergetic therapy of lung cancer

Show Author's information Linjing Wu1,§Wenhao Wang2,§Mengqin Guo1,§Fangqin Fu1Wenhua Wang2Tszching Sung1Meihong Zhang1Ziqiao Zhong1Chuanbin Wu1Xin Pan2Zhengwei Huang1( )
College of Pharmacy, Jinan University, Guangzhou 511436, China
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

§ Linjing Wu, Wenhao Wang, and Mengqin Guo contributed equally to this work.

Abstract

Fenton reaction centered ferroptosis-apoptosis synergetic therapy has emerged as a promising tumor elimination strategy. However, the low intracellular Fenton level and accumulation of therapeutics at the lesion site greatly limit the efficacy of ferroptosis therapy. To overcome these two bottlenecks, an inhalable metal polyphenol network (MPN)-hybrid liposome, encoded as LDG, was proposed for enhancing the intracellular Fenton reaction level by co-delivering the ferroptosis inducer dihydroartemisinin (DHA) and the ferrous ion (Fe2+) donor MPN. The synthesized LDG had excellent nebulization performance which significantly improved the accumulation in the lungs, about 8.2 times of intravenous injection. In terms of anticancer mechanisms, MPN raised the intracellular level of Fe2+ by constructing iron cycling in the weakly acidic environment of tumors. Triggered by Fe2+, DHA with peroxide-bridge structure underwent a high level of Fenton-like reaction, promoted the production of intracellular reactive oxygen species (ROS) and induced strong ferroptosis while cooperating with apoptosis. LDG exhibited extraordinary antitumor ability in an orthotopic lung tumor model, whose tumor inhibition efficiency was 1.53 (P = 0.0014) and 1.32 (P = 0.0183) times of the LG group (liposomes coated with gallic acid (GA)-Fe MPN) and LD group (liposomes loaded with DHA), respectively, showing the strongest anticancer effect. In conclusion, the constructed MPN-hybrid liposomes could be a potent custom nanoplatform for pulmonary delivery and underscored the great potential of ferroptosis-apoptosis synergetic therapy.

Keywords: lung cancer, ferroptosis, pulmonary delivery, metallic polyphenol network

References(38)

[1]

Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D. M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789.

[2]

Liu, X. X.; Wang, B. L.; Li, Y. Y.; Hu, Y. Z.; Li, X. L.; Yu, T.; Ju, Y.; Sun, T.; Gao, X.; Wei, Y. Q. Powerful anticolon tumor effect of targeted gene immunotherapy using folate-modified nanoparticle delivery of CCL19 to activate the immune system. ACS Cent. Sci. 2019, 5, 277–289.

[3]

Shang, S. J.; Liu, J.; Verma, V.; Wu, M.; Welsh, J.; Yu, J. M.; Chen, D. W. Combined treatment of non-small cell lung cancer using radiotherapy and immunotherapy: Challenges and updates. Cancer Commun. 2021, 41, 1086–1099.

[4]

Raguraman, R.; Shanmugarama, S.; Mehta, M.; Peterson, J. E.; Zhao, Y. D.; Munshi, A.; Ramesh, R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv. Drug Delivery Rev. 2022, 180, 114068.

[5]

Nishio, M.; Kim, D. W.; Wu, Y. L.; Nakagawa, K.; Solomon, B. J.; Shaw, A. T.; Hashigaki, S.; Ohki, E.; Usari, T.; Paolini, J. et al. Crizotinib versus chemotherapy in Asian patients with ALK-positive advanced non-small cell lung cancer. Cancer Res. Treat. 2018, 50, 691–700.

[6]

Reck, M.; Rodríguez-Abreu, D.; Robinson, A. G.; Hui, R. N.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833.

[7]

Cheung, E. C.; Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297.

[8]

Zhong, X. Y.; Wang, X. W.; Li, J. X.; Hu, J.; Cheng, L.; Yang, X. L. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coord. Chem. Rev. 2021, 437, 213828.

[9]

Kalyane, D.; Choudhary, D.; Polaka, S.; Goykar, H.; Karanwad, T.; Rajpoot, K.; Tekade, R. K. Reactive oxygen nano-generators for cancer therapy. Prog. Mater. Sci. 2022, 130, 100974.

[10]

Nguyen, N. T.; Kim, J.; Le, X. T.; Lee, W. T.; Lee, E. S.; Oh, K. T.; Choi, H. G.; Youn, Y. S. Amplified fenton-based oxidative stress utilizing ultraviolet upconversion luminescence-fueled nanoreactors for apoptosis-strengthened ferroptosis anticancer therapy. ACS Nano 2023, 17, 382–401.

[11]

Liang, Y.; Zhang, L.; Peng, C.; Zhang, S. Y.; Chen, S. W.; Qian, X.; Luo, W. X.; Dan, Q.; Ren, Y. Y.; Li, Y. J. et al. Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy. Acta Pharm. Sin. B 2021, 11, 3231–3243.

[12]

Wang, W. H.; Huang, Z. W.; Huang, Y.; Pan, X.; Wu, C. B. Updates on the applications of iron-based nanoplatforms in tumor theranostics. Int. J. Pharm. 2020, 589, 119815.

[13]

Yang, T. Y.; Yu, D. Y.; Wang, D.; Yang, T.; Li, Z. X.; Wu, M. H.; Petru, M.; Crittenden, J. Accelerating Fe(Ⅲ)/Fe(Ⅱ) cycle via Fe(Ⅱ) substitution for enhancing Fenton-like performance of Fe-MOFs. Appl. Catal. B Environ 2021, 286, 119859.

[14]

Zhu, Y. P.; Zhu, R. L.; Xi, Y. F.; Zhu, J. X.; Zhu, G. Q.; He, H. P. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B Environ 2019, 255, 117739.

[15]
Shi, Y. F.; Zhang, G.; Xiang, C.; Liu, C. Z.; Hu, J.; Wang, J. H.; Ge, R. L.; Ma, H. X.; Niu, Y. S.; Xu, Y. H. Defect engineering-mediated long-lived charge transfer excited state in fe-gallate complex improves iron cycle and enables sustainable fenton-like reaction. Adv. Mater., in press, DOI: 10.1002/adma.202305162.
[16]

Chen, Y.; Li, W.; Kwon, S.; Wang, Y. X.; Li, Z. T.; Hu, Q. Y. Small-molecule ferritin degrader as a pyroptosis inducer. J. Am. Chem. Soc. 2023, 145, 9815–9824.

[17]

Liu, J.; Li, W.; Wang, Y. X.; Ding, Y. Y.; Lee, A.; Hu, Q. Y. Biomaterials coating for on-demand bacteria delivery: Selective release, adhesion, and detachment. Nano Today 2021, 41, 101291.

[18]

Wu, W. M.; Wu, Y. K.; Wu, Y. L.; Yao, Z. J.; Zhou, C. M.; Li, Y.; Shan, F. Unified mechanistic framework for the Fe (II)-induced cleavage of qinghaosu and derivatives/analogues: The first spin-trapping evidence for the previously postulated secondary C-4 radical . J. Am. Chem. Soc. 1998, 120, 3316–3325.

[19]

Fu, F. Q.; Wang, W. H.; Wu, L. J.; Wang, W. H.; Huang, Z. W.; Huang, Y.; Wu, C. B.; Pan, X. Inhalable biomineralized liposomes for cyclic Ca2+-burst-centered endoplasmic reticulum stress enhanced lung cancer ferroptosis therapy. ACS Nano 2023, 17, 5486–5502.

[20]

Chen, J.; Zhang, W. J.; Zhang, M.; Guo, Z.; Wang, H. B.; He, M. N.; Xu, P. P.; Zhou, J. J.; Liu, Z. B.; Chen, Q. W. Mn (II) mediated degradation of artemisinin based on Fe3O4@ MnSiO3-FA nanospheres for cancer therapy in vivo. Nanoscale 2015, 7, 12542–12551.

[21]

Zhang, H. B.; Zhuo, Y. Z.; Li, D. H.; Zhang, L. Q.; Gao, Q. Y.; Yang, L.; Yuan, X. F. Dihydroartemisinin inhibits the growth of pancreatic cells by inducing ferroptosis and activating antitumor immunity. Eur. J. Pharmacol. 2022, 926, 175028.

[22]

Lin, R. Y.; Zhang, Z. H.; Chen, L. F.; Zhou, Y. F.; Zou, P.; Feng, C.; Wang, L.; Liang, G. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett. 2016, 381, 165–175.

[23]

Han, W. B.; Duan, X. P.; Ni, K. Y.; Li, Y. Y.; Chan, C.; Lin, W. B. Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate cancer immunotherapy. Biomaterials 2022, 280, 121315.

[24]

Honmane, S.; Hajare, A.; More, H.; Osmani, R. A. M.; Salunkhe, S. Lung delivery of nanoliposomal salbutamol sulfate dry powder inhalation for facilitated asthma therapy. J. Liposome Res. 2019, 29, 332–342.

[25]

Meng, F. Q.; Li, L. Y.; Zhang, Z. R.; Lin, Z. D.; Zhang, J. X.; Song, X.; Xue, T. Y.; Xing, C. Y.; Liang, X.; Zhang, X. D. Biosynthetic neoantigen displayed on bacteria derived vesicles elicit systemic antitumour immunity. J. Extracell. Vesicles 2022, 11, 12289.

[26]

Xue, T. Y.; Zhang, Z. R.; Fang, T. L.; Li, B. Q.; Li, Y.; Li, L. Y.; Jiang, Y. H.; Duan, F. F.; Meng, F. Q.; Liang, X. et al. Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer. Nano Res. 2022, 15, 5295–5304.

[27]

Li, F.; Wei, X. R.; Chen, Y. J.; Zhu, N. W.; Zhao, Y.; Cui, B. F.; Wu, P. X. Efficient recovery of lead and iron from disposal residues of spent lead-acid batteries. Resour., Conserv. Recycl. 2022, 187, 106614.

[28]

Zhang, L.; Wan, S. S.; Li, C. X.; Xu, L.; Cheng, H.; Zhang, X. Z. An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 2018, 18, 7609–7618.

[29]

Jiang, W.; Wang, Q.; Cui, D.; Han, L. X.; Chen, L. G.; Xu, J. T.; Niu, N. Metal-polyphenol network coated magnetic hydroxyapatite for pH-activated MR imaging and drug delivery. Colloids Surf. B Biointerfaces 2023, 222, 113076.

[30]

Riegman, M.; Sagie, L.; Galed, C.; Levin, T.; Steinberg, N.; Dixon, S. J.; Wiesner, U.; Bradbury, M. S.; Niethammer, P.; Zaritsky, A. et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat. Cell Biol. 2020, 22, 1042–1048.

[31]

Yi, R. X.; Wang, H. D.; Deng, C. L.; Wang, X. Y.; Yao, L.; Niu, W. H.; Fei, M. X.; Zhaba, W. Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition. Biosci. Rep. 2020, 40, BSR20193314.

[32]

Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 1998, 95, 11715–11720.

[33]

Sekine, I.; Saijo, N. Polymorphisms of metabolizing enzymes and transporter proteins involved in the clearance of anticancer agents. Ann. Oncol. 2001, 12, 1515–1525.

[34]

Wang, W. H.; Zhang, Y. T.; Wang, Z. S.; Liu, X. P.; Lu, S. Y.; Hu, X. L. A native drug-free macromolecular therapeutic to trigger mutual reinforcing of endoplasmic reticulum stress and mitochondrial dysfunction for cancer treatment. ACS Nano 2023, 17, 11023–11038.

[35]

Wang, W. H.; Fu, F. Q.; Huang, Z. W.; Wang, W. H.; Chen, M. L.; Yue, X.; Fu, J. T.; Feng, X. Q.; Huang, Y.; Wu, C. B. et al. Inhalable biomimetic protein corona-mediated nanoreactor for self-amplified lung adenocarcinoma ferroptosis therapy. ACS Nano 2022, 16, 8370–8387.

[36]

Wang, W. H.; Wang, W. H.; Jin, S. W.; Fu, F. Q.; Huang, Z. W.; Huang, Y.; Wu, C. B.; Pan, X. Open pocket and tighten holes: Inhalable lung cancer-targeted nanocomposite for enhanced ferroptosis-apoptosis synergetic therapy. Chem. Eng. J. 2023, 458, 141487.

[37]

Zimmermann, C. M.; Baldassi, D.; Chan, K.; Adams, N. B. P.; Neumann, A.; Porras-Gonzalez, D. L.; Wei, X.; Kneidinger, N.; Stoleriu, M. G.; Burgstaller, G. et al. Spray drying siRNA-lipid nanoparticles for dry powder pulmonary delivery. J. Controlled Release 2022, 351, 137–150.

[38]
Yang, S. L. X.; Wu, Y.; Zhong, W. Z.; Chen, R. E.; Wang, M. L.; Chen, M. W. GSH/Ph dual activatable cross-linked and fluorinated PEI for cancer gene therapy through endogenous iron de-hijacking and in situ ROS amplification. Adv. Mater., in press, DOI: 10.1002/adma.202304098.
File
12274_2024_6455_MOESM1_ESM.pdf (560.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 December 2023
Revised: 27 December 2023
Accepted: 28 December 2023
Published: 01 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

We appreciated the grants from the National Natural Science Foundation of China (Nos. 82104070 and 82373800), Guangdong Universities Keynote Regions Special Funded Project (No. 2022ZDZX2002), and General Project of Traditional Chinese Medicine Bureau of Guangdong Province (No. 20241071).

Return