Journal Home > Volume 17 , Issue 6

Photocatalytic oxidation techniques are promising for degradation of the highly ecotoxic and refractory isothiazolinone bactericides in relevant industrial wastewaters. However, low charge separation and directional transport efficiency under solar light radiation restrain their practical application. Here, we report a nanostructured photocatalyst doped with Gd and B in TiO2 with carbon incorporation and defect formation through incomplete calcination. The specific surface area, grain size, and hydrophilicity of TiO2 are improved, which is beneficial for the interfacial reaction between the photocatalyst and pollutants. The reduction of the bandgap, the broadening of the photo-absorption range, and the retarded electron–hole recombination promote the photocatalytic performance due to the improved oxygen vacancies based on the electron distribution modification. The difference in partial density of states (ΔPDOS) between the current catalyst and raw TiO2 indicates that the co-doping of Gd and B with incomplete calcination changes the electronic hybridization of conduction band and valence band near the Fermi level, and affects the band gap energy. It improved charge separation and directional transport efficiency and benefited the formation of main active species, including OH and O2•−, for the pollutant decomposition. The rate of photocatalytic removal of benzisothiazolinone (BIT) by the current photocatalyst reaches 1.25 h−1, being 4.31 times that of TiO2. The current work offers a constructive approach to the design and synthesis of nanostructured photocatalysts for the photocatalytic degradation of refractory organic pollutants.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced charge separation by incomplete calcination modified co-doped TiO2 nanoparticle for isothiazolinone photocatalytic degradation

Show Author's information Zhiren Guo1Xiao Zhang1Xinyuan Li1Chang Cui1Zilei Zhang1Hansheng Li1Dongxiang Zhang1,2( )Jinying Li1,2Xiyan Xu1( )Jiatao Zhang1
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
Department of Chemistry, MSU-BIT University, Shenzhen 517182, China

Abstract

Photocatalytic oxidation techniques are promising for degradation of the highly ecotoxic and refractory isothiazolinone bactericides in relevant industrial wastewaters. However, low charge separation and directional transport efficiency under solar light radiation restrain their practical application. Here, we report a nanostructured photocatalyst doped with Gd and B in TiO2 with carbon incorporation and defect formation through incomplete calcination. The specific surface area, grain size, and hydrophilicity of TiO2 are improved, which is beneficial for the interfacial reaction between the photocatalyst and pollutants. The reduction of the bandgap, the broadening of the photo-absorption range, and the retarded electron–hole recombination promote the photocatalytic performance due to the improved oxygen vacancies based on the electron distribution modification. The difference in partial density of states (ΔPDOS) between the current catalyst and raw TiO2 indicates that the co-doping of Gd and B with incomplete calcination changes the electronic hybridization of conduction band and valence band near the Fermi level, and affects the band gap energy. It improved charge separation and directional transport efficiency and benefited the formation of main active species, including OH and O2•−, for the pollutant decomposition. The rate of photocatalytic removal of benzisothiazolinone (BIT) by the current photocatalyst reaches 1.25 h−1, being 4.31 times that of TiO2. The current work offers a constructive approach to the design and synthesis of nanostructured photocatalysts for the photocatalytic degradation of refractory organic pollutants.

Keywords: photocatalytic degradation, charge separation, oxygen vacancies, TiO2 nanoparticle, electron distribution modification

References(59)

[1]

Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731.

[2]

Yu, B.; Wang, Y.; Zhang, Y.; Zhang, Z. H. Nanoporous black silver film with high porosity for efficient solar steam generation. Nano Res. 2023, 16, 5610–5618.

[3]

Shenvi, S. S.; Isloor, A. M.; Ismail, A. F. A review on RO membrane technology: Developments and challenges. Desalination 2015, 368, 10–26.

[4]

Zhao, Y. Y.; Song, X. J.; Huang, M. H.; Jiang, H. Q.; Toghan, A. Crown ether interlayer-modulated polyamide membrane with nanoscale structures for efficient desalination. Nano Res. 2023, 16, 6153–6159.

[5]

Alvarez-Rivera, G.; Dagnac, T.; Lores, M.; Garcia-Jares, C.; Sanchez-Prado, L.; Lamas, J. P.; Llompart, M. Determination of isothiazolinone preservatives in cosmetics and household products by matrix solid-phase dispersion followed by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2012, 1270, 41–50.

[6]

Collier, P. J.; Ramsey, A. J.; Austin, P.; Gilbert, P. Growth inhibitory and biocidal activity of some isothiazolone biocides. J. Appl. Bacteriol. 1990, 69, 569–577.

[7]

Lee, S.; Lee, J. S.; Kho, Y.; Ji, K. Effects of methylisothiazolinone and octylisothiazolinone on development and thyroid endocrine system in zebrafish larvae. J. Hazard. Mater. 2022, 425, 127994.

[8]

Paijens, C.; Bressy, A.; Frère, B.; Tedoldi, D.; Mailler, R.; Rocher, V.; Neveu, P.; Moilleron, R. Urban pathways of biocides towards surface waters during dry and wet weathers: Assessment at the Paris conurbation scale. J. Hazard. Mater. 2021, 402, 123765.

[9]

Li, B. T.; Chen, Z.; Wang, W. L.; Sun, Y. X.; Zhou, T. H.; Li, A.; Wu, Q. Y.; Hu, H. Y. Adsorption of isothiazolone biocides in textile reverse osmosis concentrate by powdered activated carbon. Water 2018, 10, 532.

[10]

Yang, Z. W.; Wang, W. L.; Lee, M. Y.; Wu, Q. Y.; Guan, Y. T. Synergistic effects of ozone/peroxymonosulfate for isothiazolinone biocides degradation: Kinetics, synergistic performance and influencing factors. Environ. Pollut. 2022, 294, 118626.

[11]

Ye, B.; Lee, M. Y.; Wang, W. L.; Li, A.; Liu, Z. Y.; Wu, Q. Y.; Hu, H. Y. Graphene oxide enhanced ozonation of 5-chloro-2-methyl-4-isothiazolin-3-one: Kinetics, degradation pathway, and toxicity. J. Hazard. Mater. 2020, 394, 122563.

[12]

Du, S. W.; Zou, H.; Bao, Y. F.; Qi, Y.; Xin, X. S.; Wang, S. W.; Feng, Z. C.; Zhang, F. X. Homogeneous nitrogen-doped (111)-type layered Sr5Nb4O15− x N x as a visible-light-responsive photocatalyst for water oxidation. Nano Res. 2022, 15, 9976–9984.

[13]

Wang, L. J.; Zhang, Z.; Guan, R. Q.; Wu, D. D.; Shi, W. L.; Yu, L. M.; Li, P.; Wei, W.; Zhao, Z.; Sun, Z. C. Synergistic CO2 reduction and tetracycline degradation by CuInZnS-Ti3C2T x in one photoredox cycle. Nano Res. 2022, 15, 8010–8018.

[14]

Huang, J. X.; Li, D. G.; Li, R. B.; Zhang, Q. X.; Chen, T. S.; Liu, H. J.; Liu, Y.; Lv, W. Y.; Liu, G. G. An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chem. Eng. J. 2019, 374, 242–253.

[15]

Huang, Z. W.; Hu, K. Q.; Li, X. B.; Bin, Z. N.; Wu, Q. Y.; Zhang, Z. H.; Guo, Z. J.; Wu, W. S.; Chai, Z. F.; Mei, L. et al. Thermally induced orderly alignment of porphyrin photoactive motifs in metal-organic frameworks for boosting photocatalytic CO2 reduction. J. Am. Chem. Soc. 2023, 145, 18148–18159.

[16]

Hu, K. Q.; Huang, Z. W.; Li, X. B.; Cheng, Y.; Kong, X. H.; Mei, L.; Zeng, L. W.; Zhang, Z. H.; Yu, J. P.; Gibson, J. K. et al. Tailored persistent radical-containing heterotrimetal-organic framework for boosting efficiency of visible/nir light-driven photocatalytic CO2 reduction. Adv. Funct. Mater. 2023, 33, 2213039.

[17]

Hu, K. Q.; Qiu, P. X.; Zeng, L. W.; Hu, S. X.; Mei, L.; An, S. W.; Huang, Z. W.; Kong, X. H.; Lan, J. H.; Yu, J. P. et al. Solar-driven nitrogen fixation catalyzed by stable radical-containing MOFs: Improved efficiency induced by a structural transformation. Angew. Chem., Int. Ed. 2020, 59, 20666–20671.

[18]

Liang, P. L.; Yuan, L. Y.; Du, K.; Wang, L.; Li, Z. J.; Deng, H.; Wang, X. C.; Luo, S. Z.; Shi, W. Q. Photocatalytic reduction of uranium(VI) under visible light with 2D/1D Ti3C2/CdS. Chem. Eng. J. 2021, 420, 129831.

[19]

Zhang, J.; Gao, M. T.; Wang, R. Y.; Li, X. C.; Huang, T. F.; Wang, J.; Wang, Y. W.; Zheng, Z. F. Switching of CO2 hydrogenation selectivity via chlorine poisoning over Ru/TiO2 catalyst. Nano Res. 2023, 16, 4786–4792.

[20]

Xue, J. B.; Jiang, S.; Lei, C. K.; Chang, H.; Gao, J. Q.; Liu, X. G.; Li, Q.; Shen, Q. Q. Construction of multi-homojunction TiO2 nanotubes for boosting photocatalytic hydrogen evolution by steering photogenerated charge transfer. Nano Res. 2023, 16, 2259–2270.

[21]

Yavuz, C.; Ela, S. E. Fabrication of g-C3N4-reinforced CdS nanosphere-decorated TiO2 nanotablet composite material for photocatalytic hydrogen production and dye-sensitized solar cell application. J. Alloys Compd. 2023, 936, 168209.

[22]

Liu, W. Q.; Peng, H. P.; Li, L. G.; Wang, M. M.; Geng, H. B.; Huang, X. Q. Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution. Nano Res. 2023, 16, 4488–4493.

[23]

Wang, S. H.; Chen, T. K.; Rao, K. K.; Wong, M. S. Nanocolumnar titania thin films uniquely incorporated with carbon for visible light photocatalysis. Appl. Catal. B: Environ. 2007, 76, 328–334.

[24]

Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2− x B x under visible irradiation. J. Am. Chem. Soc. 2004, 126, 4782–4783.

[25]

Chen, X. B.; Burda, C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 2008, 130, 5018–5019.

[26]

Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245.

[27]

Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582.

[28]

Ranjit, K. T.; Willner, I.; Bossmann, S. H.; Braun, A. M. Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environ. Sci. Technol. 2001, 35, 1544–1549.

[29]

Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem., Int. Ed. 2003, 42, 4908–4911.

[30]

Xu, X. Y.; Liu, S. M.; Sun, P. F.; Guo, Z. R.; Smith, K.; Zhang, D. X.; Li, H. S.; Bedia, J.; Belver, C. Iron tungstate on nano-γ-alumina as photocatalyst for 1,4-dioxane solar degradation in water. J. Clean. Prod. 2022, 377, 134232.

[31]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[32]

Yin, J. Y.; Hai, P. Q.; Gao, Y.; Gan, Z. H.; Wu, C.; Cheng, Y. H.; Xu, X. Theory-driven designed TiO2@MoO2 heterojunction: Balanced crystallinity and nanostructure toward desirable kinetics and high-rate sodium-ion storage. Nano Res. 2023, 16, 4941–4949.

[33]

Baiju, K. V.; Periyat, P.; Shajesh, P.; Wunderlich, W.; Manjumol, K. A.; Smitha, V. S.; Jaimy, K. B.; Warrier, K. G. K. Mesoporous gadolinium doped titania photocatalyst through an aqueous sol-gel method. J. Alloys Compd. 2010, 505, 194–200.

[34]

Trejo-García, P.; Palomino-Merino, R.; De la Cruz, J.; Espinosa, J. E.; Torres, R. A.; Gervacio-Arciniega, J. J.; Moreno-Barbosa, E.; de Celis Alonso, B.; Soto, E.; Agustín-Serrano, R. et al. Luminescent properties of titania doped with nanoparticles of gadolinium oxide and europium. Ceram. Int. 2020, 46, 26326–26334.

[35]

Wang, X. Q.; Sø, L.; Su, R.; Wendt, S.; Hald, P.; Mamakhel, A.; Yang, C. X.; Huang, Y. D.; Iversen, B. B.; Besenbacher, F. The influence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol. J. Catal. 2014, 310, 100–108.

[36]

Wei, C. H.; Tang, X. H.; Liang, J. R.; Tan, S. Y. Preparation, characterization and photocatalytic activities of boron- and cerium-codoped TiO2. J. Environ. Sci. 2007, 19, 90–96.

[37]

Raiser, D.; Deville, J. P. Study of XPS photoemission of some gadolinium compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 57, 91–97.

[38]

Irie, H.; Watanabe, Y.; Hashimoto, K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 2003, 32, 772–773.

[39]

Dong, F.; Wang, H. Q.; Wu, Z. B. One-step “green” synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. J. Phys. Chem. C 2009, 113, 16717–16723.

[40]

Sanjinés, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; Lévy, F. Electronic structure of anatase TiO2 oxide. J. Appl. Phys. 1994, 75, 2945–2951.

[41]

Zhang, C. L.; Guo, D.; Shen, T. Y.; Hou, X. H.; Zhu, M. L.; Liu, S. C.; Hu, Q. Titanium dioxide/magnetic metal-organic framework preparation for organic pollutants removal from water under visible light. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 589, 124484.

[42]

Wang, Y. Z.; Wu, Y. S.; Yang, H.; Xue, X. X.; Liu, Z. H. Doping TiO2 with boron or/and cerium elements: Effects on photocatalytic antimicrobial activity. Vacuum 2016, 131, 58–64.

[43]

Zhang, X. L.; Yuan, N.; Li, Y.; Han, L. J.; Wang, Q. B. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline. Chem. Eng. J. 2022, 428, 131077.

[44]

Sarma, D. D.; Rao, C. N. R. XPES studies of oxides of second- and third-row transition metals including rare earths. J. Electron Spectrosc. Relat. Phenom. 1980, 20, 25–45.

[45]

Gouin, X.; Grange, P.; Bois, L.; L’Haridon, P.; Laurent, Y. Characterization of the nitridation process of boric acid. J. Alloys Compd. 1995, 224, 22–28.

[46]

Yang, K. S.; Dai, Y.; Huang, B. B. Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles. J. Phys. Chem. C 2007, 111, 18985–18994.

[47]

Yang, Y. C.; Wen, J. W.; Wei, J. H.; Xiong, R.; Shi, J.; Pan, C. X. Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination. ACS Appl. Mater. Interfaces 2013, 5, 6201–6207.

[48]

Li, Y. C.; Yu, B.; Hu, Z. Q.; Wang, H. Construction of direct Z-scheme SnS2@ZnIn2S4@kaolinite heterostructure photocatalyst for efficient photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2022, 429, 132105.

[49]

Roy, D.; Neogi, S.; De, S. Mechanistic investigation of photocatalytic degradation of Bisphenol-A using MIL-88A(Fe)/MoS2 Z-scheme heterojunction composite assisted peroxymonosulfate activation. Chem. Eng. J. 2022, 428, 131028.

[50]

Xu, X. Y.; Pliego, G.; Alonso, C.; Liu, S. M.; Nozal, L.; Rodriguez, J. J. Reaction pathways of heat-activated persulfate oxidation of naphthenic acids in the presence and absence of dissolved oxygen in water. Chem. Eng. J. 2019, 370, 695–705.

[51]

Abdullah, M.; Low, G. K. C.; Matthews, R. W. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem. 1990, 94, 6820–6825.

[52]

Chen, C. C.; Li, X. Z.; Ma, W. H.; Zhao, J. C.; Hidaka, H.; Serpone, N. Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: A probe for the interfacial electron transfer process and reaction mechanism. J. Phys. Chem. B 2002, 106, 318–324.

[53]

Brillas, E.; Sirés, I.; Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.

[54]

Kandavelu, V.; Kastien, H.; Thampi, K. R. Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts. Appl. Catal. B: Environ. 2004, 48, 101–111.

[55]

Wang, S.; Chen, M. R.; Shen, S. B.; Cheng, C. H.; Cai, A. J.; Song, A. J.; Lu, X. L.; Gao, G. S.; Ma, M. Z.; Zhang, Z. W. et al. Bifunctionalized Fe7S8@MoS2-O core–shell with efficient photocatalytic activity based on internal electric field. J. Clean. Prod. 2022, 335, 130375.

[56]

Araya, T.; Jia, M. K.; Yang, J.; Zhao, P.; Cai, K.; Ma, W. H.; Huang, Y. P. Resin modified MIL-53 (Fe) MOF for improvement of photocatalytic performance. Appl. Catal. B: Environ. 2017, 203, 768–777.

[57]

Zhou, G.; Wang, P. F.; Li, H.; Huang, R.; Hu, B.; Liu, Y. T.; Li, T. H. Bimetallic-atom-hybridization-driven catalytic reaction kinetics and solar utilization to accelerate norfloxacin degradation. Appl. Catal. B: Environ. 2021, 298, 120525.

[58]

Lu, X. Y.; Che, W. J.; Hu, X. F.; Wang, Y.; Zhang, A. T.; Deng, F.; Luo, S. L.; Dionysiou, D. D. The facile fabrication of novel visible-light-driven Z-scheme CuInS2/Bi2WO6 heterojunction with intimate interface contact by in situ hydrothermal growth strategy for extraordinary photocatalytic performance. Chem. Eng. J. 2019, 356, 819–829.

[59]

Ma, J. Z.; Wang, C. X.; He, H. Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light. Appl. Catal. B: Environ. 2016, 184, 28–34.

File
12274_2024_6453_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 November 2023
Revised: 21 December 2023
Accepted: 24 December 2023
Published: 02 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

We are grateful for the support of the National Key R&D Program of China (No. 2021YFC2102205), the National Natural Science Foundation of China (No. 51808312), and the CNNC Key Laboratory on Uranium Extraction from Seawater (No. KLUES202207).

Return