Journal Home > Volume 17 , Issue 6

Recently, graphene has drawn considerable attention in the field of electronics, owing to its favorable conductivity and high carrier mobility. Crucial to the industrialization of graphene is its high-quality microfabrication via chemical vapor deposition. However, many problems remain in its preparation, such as the not fully understood cracking mechanism of the carbon source, the mechanism of its substrate oxidation, and insufficient defect repair theory. To help close this capability gap, this study leverages density functional theory to explore the role of O in graphene growth. The effects of Cu substrate oxidation on carbon source cracking, nucleation barriers, crystal nucleus growth, and defect repairs are discussed. OCu was found to reduce energy change during dehydrogenation, rendering the process easier. Moreover, the adsorbed O in graphene or its Cu substrate can promote defect repair and edge growth.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Theoretical investigations on the growth of graphene by oxygen-assisted chemical vapor deposition

Show Author's information Xiaoli Sun1Chaojie Yu1,2Yujia Yang1Zhihao Li3Jianjian Shi4( )Wanjian Yin1,3( )Zhongfan Liu1,5( )
Beijing Graphene Institute (BGI), Beijing 100095, China
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, China
School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Abstract

Recently, graphene has drawn considerable attention in the field of electronics, owing to its favorable conductivity and high carrier mobility. Crucial to the industrialization of graphene is its high-quality microfabrication via chemical vapor deposition. However, many problems remain in its preparation, such as the not fully understood cracking mechanism of the carbon source, the mechanism of its substrate oxidation, and insufficient defect repair theory. To help close this capability gap, this study leverages density functional theory to explore the role of O in graphene growth. The effects of Cu substrate oxidation on carbon source cracking, nucleation barriers, crystal nucleus growth, and defect repairs are discussed. OCu was found to reduce energy change during dehydrogenation, rendering the process easier. Moreover, the adsorbed O in graphene or its Cu substrate can promote defect repair and edge growth.

Keywords: density functional theory, chemical vapor deposition, oxygen-assisted graphene growth, Cu substrate

References(45)

[1]

Quellmalz, A.; Wang, X. J.; Sawallich, S.; Uzlu, B.; Otto, M.; Wagner, S.; Wang, Z. X.; Prechtl, M.; Hartwig, O.; Luo, S. W. et al. Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nat. Commun. 2021, 12, 917.

[2]

Jiang, B.; Wang, S. W.; Sun, J. Y.; Liu, Z. F. Controllable synthesis of wafer-scale graphene films: Challenges, status, and perspectives. Small 2021, 17, 2008017.

[3]

Qi, Y.; Sun, L. Z.; Liu, Z. F. Super graphene-skinned material: A new member of graphene materials family. Acta Phys.-Chim. Sin. 2023, 39, 2307028.

[4]

Gong, C. H.; Hu, K.; Wang, X. P.; Wangyang, P.; Yan, C. Y.; Chu, J. W.; Liao, M.; Dai, L. P.; Zhai, T. Y.; Wang, C. et al. 2D nanomaterial arrays for electronics and optoelectronics. Adv. Funct. Mater. 2018, 28, 1706559.

[5]

Liu, W.; Lv, J. H.; Peng, L.; Guo, H. W.; Liu, C.; Liu, Y. L.; Li, W.; Li, L. F.; Liu, L. X.; Wang, P. Q. et al. Graphene charge-injection photodetectors. Nat. Electron. 2022, 5, 281–288.

[6]

Bai, H.; Li, C.; Shi, G. Q. Functional composite materials based on chemically converted graphene. Adv. Mater. 2011, 23, 1089–1115.

[7]

Guo, T. H.; Wang, H. Y.; Han, W. H.; Zhang, J.; Wang, C. L.; Ma, T. S.; Zhang, Z. Q.; Deng, Z. Q.; Chen, D.; Xu, W. W. et al. Designed p-type graphene quantum dots to heal interface charge transfer in Sn-Pb perovskite solar cells. Nano Energy 2022, 98, 107298.

[8]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[9]

Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F. H. L.; Huyghebaert, C.; Neumaier, D.; Galli, P.; Templ, W.; D'Errico, A. Ferrari, A. C. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 2018, 3, 392–414.

[10]

Abergel, D. S. L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of graphene: A theoretical perspective. Adv. Phys. 2010, 59, 261–482.

[11]

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

[12]

Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5.

[13]

Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524.

[14]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[15]

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

[16]

Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

[17]

Xu, Z. W.; Yan, T. Y.; Liu, G. W.; Qiao, G. J.; Ding, F. Large scale atomistic simulation of single-layer graphene growth on Ni(111) surface: Molecular dynamics simulation based on a new generation of carbon-metal potential. Nanoscale 2016, 8, 921–929.

[18]

Sun, L. Z.; Lin, L.; Zhang, J. C.; Wang, H.; Peng, H. L.; Liu, Z. F. Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source. Nano Res. 2017, 10, 355–363.

[19]

Wang, X. L.; Yuan, Q. H.; Li, J.; Ding, F. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale 2017, 9, 11584–11589.

[20]

Lee, I.; Nam, J.; Park, S. J.; Bae, D. J.; Hong, S.; Kim, K. S. Rapid chemical vapor deposition of graphene using methanol as a precursor. Carbon Lett. 2021, 31, 307–313.

[21]

Cho, H.; Lee, C.; Oh, I. S.; Park, S.; Kim, H. C.; Kim, M. J. Parametric study of methanol chemical vapor deposition growth for graphene. Carbon Lett. 2012, 13, 205–211.

[22]

Gadipelli, S.; Calizo, I.; Ford, J.; Cheng, G. J.; Hight Walker, A. R.; Yildirim, T. A highly practical route for large-area, single layer graphene from liquid carbon sources such as benzene and methanol. J. Mater. Chem. 2011, 21, 16057–16065.

[23]

Woo, Y. S.; Seo, D. H.; Yeon, D. H.; Heo, J.; Chung, H. J.; Benayad, A.; Chung, J. G.; Han, H.; Lee, H. S.; Seo, S. et al. Low temperature growth of complete monolayer graphene films on Ni-doped copper and gold catalysts by a self-limiting surface reaction. Carbon 2013, 64, 315–323.

[24]

Cheng, T.; Liu, Z. R.; Liu, Z. F.; Ding, F. The mechanism of graphene vapor-solid growth on insulating substrates. ACS Nano 2021, 15, 7399–7408.

[25]

Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548–17551.

[26]

Liu, B. Z.; Wang, H. H.; Gu, W.; Zhou, L.; Chen, Z. L.; Nie, Y. F.; Tan, C. W.; Ci, H. N.; Wei, N.; Cui, L. Z. et al. Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications. Nano Res. 2021, 14, 260–267.

[27]

Liu, Y. F.; Wu, T. R.; Yin, Y. L.; Zhang, X. F.; Yu, Q. K.; Searles, D. J.; Ding, F.; Yuan, Q. H.; Xie, X. M. How low nucleation density of graphene on CuNi alloy is achieved. Adv. Sci. 2018, 5, 1700961.

[28]

Yuan, S. J.; Meng, L. J.; Wang, J. L. Greatly improved methane dehydrogenation via Ni adsorbed Cu(100) surface. J. Phys. Chem. C 2013, 117, 14796–14803.

[29]

Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2016, 15, 43–47.

[30]

Xu, X. Z.; Zhang, Z. H.; Qiu, L.; Zhuang, J. N.; Zhang, L.; Wang, H.; Liao, C. N.; Song, H. D.; Qiao, R. X.; Gao, P. et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 2016, 11, 930–935.

[31]

Xie, Y. D.; Cheng, T.; Liu, C.; Chen, K.; Cheng, Y.; Chen, Z. L.; Qiu, L.; Cui, G.; Yu, Y.; Cui, L. Z. et al. Ultrafast catalyst-free graphene growth on glass assisted by local fluorine supply. ACS Nano 2019, 13, 10272–10278.

[32]

Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

[33]

Zhang, Y. H.; Zhang, H. R.; Li, F.; Shu, H. B.; Chen, Z. Y.; Sui, Y.; Zhang, Y. Q.; Ge, X. M.; Yu, G. H.; Jin, Z. et al. Invisible growth of microstructural defects in graphene chemical vapor deposition on copper foil. Carbon 2016, 96, 237–242.

[34]

Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431.

[35]

Weber, N. E.; Binder, A.; Kettner, M.; Hirth, S.; Weitz, R. T.; Tomović, Ž. Metal-free synthesis of nanocrystalline graphene on insulating substrates by carbon dioxide-assisted chemical vapor deposition. Carbon 2017, 112, 201–207.

[36]

Wang, H. P.; Xue, X. D.; Jiang, Q. Q.; Wang, Y. L.; Geng, D. C.; Cai, L.; Wang, L. P.; Xu, Z. P.; Yu, G. Primary nucleation-dominated chemical vapor deposition growth for uniform graphene monolayers on dielectric substrate. J. Am. Chem. Soc. 2019, 141, 11004–11008.

[37]

Wei, S. J.; Ma, L. P.; Chen, M. L.; Liu, Z. B.; Ma, W.; Sun, D. M.; Cheng, H. M.; Ren, W. C. Water-assisted rapid growth of monolayer graphene films on SiO2/Si substrates. Carbon 2019, 148, 241–248.

[38]

Shan, J. J.; Cui, L. Z.; Zhou, F.; Wang, R. Y.; Cui, K. J.; Zhang, Y. F.; Liu, Z. F. Ethanol-precursor-mediated growth and thermochromic applications of highly conductive vertically oriented Graphene on soda-lime glass. ACS Appl. Mater. Interfaces 2020, 12, 11972–11978.

[39]
Xie, H. H.; Cui, K. J.; Cui, L. Z.; Liu, B. Z.; Yu, Y.; Tan, C. W.; Zhang, Y. Y.; Zhang, Y. F.; Liu, Z. F. H2O-etchant-promoted synthesis of high-quality graphene on glass and its application in see-through thermochromic displays. Small 2020 , 16, 1905485.
[40]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[41]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[42]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[43]

Li, Y. F.; Li, M. C.; Wang, T.; Bai, F.; Yu, Y. X. DFT study on the atomic-scale nucleation path of graphene growth on the Cu(111) surface. Phys. Chem. Chem. Phys. 2014, 16, 5213–5220.

[44]

Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 2012, 6, 3243–3250.

[45]

Dong, J. C.; Zhang, L. N.; Dai, X. Y.; Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 2020, 11, 5862.

File
12274_2024_6452_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 November 2023
Revised: 24 December 2023
Accepted: 25 December 2023
Published: 07 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. T2188101, 52021006, and 52072042), the National Natural Science Foundation Youth Fund (Nos. 22105006 and 52202033), Beijing National Laboratory for Molecular Science (No. BNLMS-CXTD-202001), the National Key R&D Program of China (Nos. 2016YFA0200101, 2016YFA0200103, and 2018YFA0703502), and the Beijing Municipal Science & Technology Commission (Nos. Z191100000819005, Z191100000819007, and Z201100008720005).

Return