Journal Home > Volume 17 , Issue 2

Spintronic devices are driving new paradigms of bio-inspired, energy efficient computation like neuromorphic stochastic computing and in-memory computing. They have also emerged as key candidates for non-volatile memories for embedded systems as well as alternatives to persistent memories. To meet the growing demands from such diverse applications, there is need for innovation in materials and device designs which can be scaled and adapted according to the application. Two-dimensional (2D) magnetic materials address challenges facing bulk magnet systems by offering scalability while maintaining device integrity and allowing efficient control of magnetism. In this review, we highlight the progress made in experimental studies on 2D magnetic materials towards their integration into spintronic devices. We provide an account of the various relevant material discoveries, demonstrations of current and voltage-based control of magnetism and reported device systems, while also discussing the challenges and opportunities towards integration of 2D magnetic materials in commercial spintronic devices.


menu
Abstract
Full text
Outline
About this article

Two-dimensional magnetic materials for spintronic applications

Show Author's information Shivam N. Kajale1,§Jad Hanna1,2,§Kyuho Jang1,§Deblina Sarkar1( )
MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, 8092, Switzerland

§ Shivam N. Kajale, Jad Hanna, and Kyuho Jang contributed equally to this work.

Abstract

Spintronic devices are driving new paradigms of bio-inspired, energy efficient computation like neuromorphic stochastic computing and in-memory computing. They have also emerged as key candidates for non-volatile memories for embedded systems as well as alternatives to persistent memories. To meet the growing demands from such diverse applications, there is need for innovation in materials and device designs which can be scaled and adapted according to the application. Two-dimensional (2D) magnetic materials address challenges facing bulk magnet systems by offering scalability while maintaining device integrity and allowing efficient control of magnetism. In this review, we highlight the progress made in experimental studies on 2D magnetic materials towards their integration into spintronic devices. We provide an account of the various relevant material discoveries, demonstrations of current and voltage-based control of magnetism and reported device systems, while also discussing the challenges and opportunities towards integration of 2D magnetic materials in commercial spintronic devices.

Keywords: magnetism, spintronics, van der Waals, spin-orbit torque, magnetic tunnel junction (MTJ)

References(171)

[1]

Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

[2]

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

[3]

Baibich, M. N.; Broto, J. M.; Fert, A.; Van Dau, F. N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475.

[4]

Chappert, C.; Fert, A.; Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, 813–823.

[5]

Camsari, K. Y.; Sutton, B. M.; Datta, S. P-bits for probabilistic spin logic. Appl. Phys. Rev. 2019, 6, 011305.

[6]

Sengupta, A.; Roy, K. Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing. Appl. Phys. Rev. 2017, 4, 041105.

[7]

Chumak, A. V.; Vasyuchka, V. I.; Serga, A. A.; Hillebrands, B. Magnon spintronics. Nat. Phys. 2015, 11, 453–461.

[8]

Locatelli, N.; Cros, V.; Grollier, J. Spin-torque building blocks. Nat. Mater. 2014, 13, 11–20.

[9]

Loss, D.; DiVincenzo, D. P.; DiVincenzo, P. Quantum computation with quantum dots. Phys. Rev. A 1998, 57, 120–126.

[10]

Jung, S.; Lee, H.; Myung, S.; Kim, H.; Yoon, S. K.; Kwon, S. W.; Ju, Y. M.; Kim, M.; Yi, W.; Han, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 2022, 601, 211–216.

[11]

Huang, K. F.; Wang, D. S.; Tsai, M. H.; Lin, H. H.; Lai, C. H. Initialization-free multilevel states driven by spin-orbit torque switching. Adv. Mater. 2017, 29, 1601575.

[12]

Liu, J. H.; Xu, T.; Feng, H. M.; Zhao, L.; Tang, J. S.; Fang, L.; Jiang, W. J. Compensated ferrimagnet based artificial synapse and neuron for ultrafast neuromorphic computing. Adv. Funct. Mater. 2022, 32, 2107870.

[13]

Zhou, J.; Zhao, T. Y.; Shu, X. Y.; Liu, L.; Lin, W. N.; Chen, S. H.; Shi, S.; Yan, X. B.; Liu, X. G.; Chen, J. S. Spin-orbit torque-induced domain nucleation for neuromorphic computing. Adv. Mater. 2021, 33, 2103672.

[14]

Cao, Y.; Rushforth, A.; Sheng, Y.; Zheng, H. Z.; Wang, K. Y. Tuning a binary ferromagnet into a multistate synapse with spin-orbit-torque-induced plasticity. Adv. Funct. Mater. 2019, 29, 1808104.

[15]

Kurenkov, A.; DuttaGupta, S.; Zhang, C. L.; Fukami, S.; Horio, Y.; Ohno, H. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin-orbit torque switching. Adv. Mater. 2019, 31, 1900636.

[16]

Mishra, R.; Kumar, D.; Yang, H. Oxygen-migration-based spintronic device emulating a biological synapse. Phys. Rev. Appl. 2019, 11, 054065.

[17]

Cai, J. L.; Fang, B.; Zhang, L. K.; Lv, W. X.; Zhang, B. S.; Zhou, T. J.; Finocchio, G.; Zeng, Z. M. Voltage-controlled spintronic stochastic neuron based on a magnetic tunnel junction. Phys. Rev. Appl. 2019, 11, 034015.

[18]

Borders, W. A.; Pervaiz, A. Z.; Fukami, S.; Camsari, K. Y.; Ohno, H.; Datta, S. Integer factorization using stochastic magnetic tunnel junctions. Nature 2019, 573, 390–393.

[19]

Gajek, M.; Nowak, J. J.; Sun, J. Z.; Trouilloud, P. L.; O’Sullivan, E. J.; Abraham, D. W.; Gaidis, M. C.; Hu, G.; Brown, S.; Zhu, Y. et al. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Appl. Phys. Lett. 2012, 100, 132408.

[20]

Safranski, C.; Kaiser, J.; Trouilloud, P.; Hashemi, P.; Hu, G. H.; Sun, J. Z. Demonstration of nanosecond operation in stochastic magnetic tunnel junctions. Nano Lett. 2021, 21, 2040–2045.

[21]

Safranski, C.; Hu, G. H.; Sun, J. Z.; Hashemi, P.; Brown, S. L.; Buzi, L.; D’Emic, C. P.; Edwards, E. R. J.; Galligan, E.; Gottwald, M. G. et al. Reliable sub-nanosecond switching in magnetic tunnel junctions for MRAM applications. IEEE Trans. Electron Devices 2022, 69, 7180–7183.

[22]

Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.

[23]

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

[24]
Pillai, S. C.; Ganguly, P. 2D Materials for Energy Storage and Conversion; IOP Publishing: Bristol, 2021.
DOI
[25]

Kajale, S. N.; Yadav, S.; Cai, Y. B.; Joy, B.; Sarkar, D. 2D material based field effect transistors and nanoelectromechanical systems for sensing applications. iScience 2021, 24, 103513

[26]

Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003.

[27]

Yang, H.; Valenzuela, S. O.; Chshiev, M.; Couet, S.; Dieny, B.; Dlubak, B.; Fert, A.; Garello, K.; Jamet, M.; Jeong, D. E. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 2022, 606, 663–673.

[28]

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

[29]

Khan, Y.; Obaidulla, S. M.; Habib, M. R.; Gayen, A.; Liang, T.; Wang, X. F.; Xu, M. S. Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today 2020, 34, 100902.

[30]

Li, H.; Ruan, S. C.; Zeng, Y. J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater. 2019, 31, 1900065.

[31]

Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

[32]

Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 1955, 97, 334–345.

[33]

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

[34]

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

[35]

Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.

[36]

Gupta, V.; Cham, T. M.; Stiehl, G. M.; Bose, A.; Mittelstaedt, J. A.; Kang, K. F.; Jiang, S. W.; Mak, K. F.; Shan, J.; Buhrman, R. A. et al. Manipulation of the van der Waals magnet Cr2Ge2Te6 by spin-orbit torques. Nano Lett. 2020, 20, 7482–7488.

[37]

Klein, D. R.; MacNeill, D.; Lado, J. L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018, 360, 1218–1222.

[38]

Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976.

[39]

Chen, H.; Asif, S.; Dolui, K.; Wang, Y.; Támara-Isaza, J.; Goli, V. M. L. D. P.; Whalen, M.; Wang, X. H.; Chen, Z. J.; Zhang, H. Q. et al. Above-room-temperature ferromagnetism in thin van der Waals flakes of cobalt-substituted Fe5GeTe2. ACS Appl. Mater. Interfaces 2023, 15, 3287–3296.

[40]

Huang, M. Q.; Zhou, J. C.; Chen, D.; Lu, H. Y.; McLaughlin, N. J.; Li, S. L.; Alghamdi, M.; Djugba, D.; Shi, J.; Wang, H. et al. Wide field imaging of van der Waals ferromagnet Fe3GeTe2 by spin defects in hexagonal boron nitride. Nat. Commun. 2022, 13, 5369.

[41]

Kumar, P.; Fabre, F.; Durand, A.; Clua-Provost, T.; Li, J.; Edgar, J. H.; Rougemaille, N.; Coraux, J.; Marie, X.; Renucci, P. et al. Magnetic imaging with spin defects in hexagonal boron nitride. Phys. Rev. Appl. 2022, 18, L061002.

[42]

Healey, A. J.; Scholten, S. C.; Yang, T.; Scott, J. A.; Abrahams, G. J.; Robertson, I. O.; Hou, X. F.; Guo, Y. F.; Rahman, S.; Lu, Y. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 2023, 19, 87–91.

[43]

Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

[44]

Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 1967, 158, 383–386.

[45]

Onsager, L. Crystal statistics I. A two-dimensional model with an order-disorder transition. Phys. Rev. 1944, 65, 117–149.

[46]

Henkel, M.; Andrieu, S.; Bauer, P.; Piecuch, M. Finite-size scaling in thin Fe/Ir(100) layers. Phys. Rev. Lett. 1998, 80, 4783–4786.

[47]

Zhang, R. J.; Willis, R. F. Thickness-dependent curie temperatures of ultrathin magnetic films: Effect of the range of spin–spin interactions. Phys. Rev. Lett. 2001, 86, 2665–2668.

[48]

Jiang, X.; Liu, Q. X.; Xing, J. P.; Liu, N. S.; Guo, Y.; Liu, Z. F.; Zhao, J. J. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Appl. Phys. Rev. 2021, 8, 031305.

[49]

Carteaux, V.; Brunet, D.; Ouvrard, G.; Andre, G. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J. Phys. Condens. Matter 1995, 7, 69–87.

[50]

Sun, Y.; Xiao, R. C.; Lin, G. T.; Zhang, R. R.; Ling, L. S.; Ma, Z. W.; Luo, X.; Lu, W. J.; Sun, Y. P.; Sheng, Z. G. Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr2Ge2Te6. Appl. Phys. Lett. 2018, 112, 072409.

[51]

Verzhbitskiy, I. A.; Kurebayashi, H.; Cheng, H. X.; Zhou, J.; Khan, S.; Feng, Y. P.; Eda, G. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 2020, 3, 460–465.

[52]

Wang, N. Z.; Tang, H. B.; Shi, M. Z.; Zhang, H.; Zhuo, W. Z.; Liu, D. Y.; Meng, F. B.; Ma, L. K.; Ying, J. J.; Zou, L. J. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 2019, 141, 17166–17173.

[53]

Mak, K. F.; Shan, J.; Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661.

[54]

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

[55]

Jiang, S. W.; Shan, J.; Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410.

[56]

Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

[57]

Li, T. X.; Jiang, S. W.; Sivadas, N.; Wang, Z. F.; Xu, Y.; Weber, D.; Goldberger, J. E.; Watanabe, K.; Taniguchi, T.; Fennie, C. J. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303–1308.

[58]

Lado, J. L.; Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 2017, 4, 035002.

[59]

Niu, B.; Su, T.; Francisco, B. A.; Ghosh, S.; Kargar, F.; Huang, X.; Lohmann, M.; Li, J. X.; Xu, Y. D.; Taniguchi, T. et al. Coexistence of magnetic orders in two-dimensional magnet CrI3. Nano Lett. 2020, 20, 553–558.

[60]

Liu, Y.; Wu, L. J.; Tong, X.; Li, J.; Tao, J.; Zhu, Y. M.; Petrovic, C. Thickness-dependent magnetic order in CrI3 single crystals. Sci. Rep. 2019, 9, 13599.

[61]

Soriano, D.; Cardoso, C.; Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun. 2019, 299, 113662.

[62]

Jiang, P. H.; Wang, C.; Chen, D. C.; Zhong, Z. C.; Yuan, Z.; Lu, Z. Y.; Ji, W. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 2019, 99, 144401.

[63]

Kumar Gudelli, V.; Guo, G. Y. Magnetism and magneto-optical effects in bulk and few-layer CrI3: A theoretical GGA + U study. New J. Phys. 2019, 21, 053012.

[64]

Meseguer-Sánchez, J.; Popescu, C.; García-Muñoz, J. L.; Luetkens, H.; Taniashvili, G.; Navarro-Moratalla, E.; Guguchia, Z.; Santos, E. J. G. Coexistence of structural and magnetic phases in van der Waals magnet CrI3. Nat. Commun. 2021, 12, 6265.

[65]

Tan, C.; Lee, J.; Jung, S. G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M. R.; McCulloch, D. G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554.

[66]

Liu, S. S.; Yuan, X.; Zou, Y. C.; Sheng, Y.; Huang, C.; Zhang, E. Z.; Ling, J. W.; Liu, Y. W.; Wang, W. Y.; Zhang, C. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl. 2017, 1, 30.

[67]

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

[68]

Seo, J.; Kim, D. Y.; An, E. S.; Kim, K.; Kim, G. Y.; Hwang, S. Y.; Kim, D. W.; Jang, B. G.; Kim, H.; Eom, G. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 2020, 6, eaay8912.

[69]

Wang, H. T.; Lu, H. C.; Guo, Z. X.; Li, A.; Wu, P. C.; Li, J.; Xie, W. R.; Sun, Z. M.; Li, P.; Damas, H. et al. Interfacial engineering of ferromagnetism in wafer-scale van der Waals Fe4GeTe2 far above room temperature. Nat. Commun. 2023, 14, 2483.

[70]

May, A. F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z. Y.; Liu, Y. H.; Xu, X. D.; McGuire, M. A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442.

[71]

Zhang, G. J.; Guo, F.; Wu, H.; Wen, X. K.; Yang, L.; Jin, W.; Zhang, W. F.; Chang, H. X. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun. 2022, 13, 5067.

[72]

Wen, Y.; Liu, Z. H.; Zhang, Y.; Xia, C. X.; Zhai, B. X.; Zhang, X. H.; Zhai, G. H.; Shen, C.; He, P.; Cheng, R. Q. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020, 20, 3130–3139.

[73]

Chua, R.; Zhou, J.; Yu, X. J.; Yu, W.; Gou, J.; Zhu, R.; Zhang, L.; Liu, M. Z.; Breese, M. B. H.; Chen, W. et al. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv. Mater. 2021, 33, 2103360.

[74]

Sun, X. D.; Li, W. Y.; Wang, X.; Sui, Q.; Zhang, T. Y.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S.; Y. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363.

[75]

Meng, L. J.; Zhou, Z.; Xu, M. Q.; Yang, S. Q.; Si, K. P.; Liu, L. X.; Wang, X. G.; Jiang, H. N.; Li, B. X.; Qin, P. X. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 2021, 12, 809.

[76]

Seo, J.; An, E. S.; Park, T.; Hwang, S. Y.; Kim, G. Y.; Song, K.; Noh, W. S.; Kim, J. Y.; Choi, G. S.; Choi, M. et al. Tunable high-temperature itinerant antiferromagnetism in a van der Waals magnet. Nat. Commun. 2021, 12, 2844.

[77]

Chu, J. W.; Zhang, Y.; Wen, Y.; Qiao, R. X.; Wu, C. C.; He, P.; Yin, L.; Cheng, R. Q.; Wang, F.; Wang, Z. X. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 2019, 19, 2154–2161.

[78]

Cui, F. F.; Zhao, X. X.; Xu, J. J.; Tang, B.; Shang, Q. Y.; Shi, J. P.; Huan, Y. H.; Liao, J. H.; Chen, Q.; Hou, Y. L. et al. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv. Mater. 2020, 32, 1905896.

[79]

Roy, A.; Guchhait, S.; Dey, R.; Pramanik, T.; Hsieh, C. C.; Rai, A.; Banerjee, S. K. Perpendicular magnetic anisotropy and spin glass-like behavior in molecular beam epitaxy grown chromium telluride thin films. ACS Nano 2015, 9, 3772–3779.

[80]

Burn, D. M.; Duffy, L. B.; Fujita, R.; Zhang, S. L.; Figueroa, A. I.; Herrero-Martin, J.; van der Laan, G.; Hesjedal, T. Cr2Te3 thin films for integration in magnetic topological insulator heterostructures. Sci. Rep. 2019, 9, 10793.

[81]

Li, H. X.; Wang, L. J.; Chen, J. S.; Yu, T.; Zhou, L.; Qiu, Y.; He, H. T.; Ye, F.; Sou, I. K.; Wang, G. Molecular beam epitaxy grown Cr2Te3 thin films with tunable curie temperatures for spintronic devices. ACS Appl. Nano Mater. 2019, 2, 6809–6817.

[82]

Chen, C.; Chen, X. D.; Wu, C. W.; Wang, X.; Ping, Y.; Wei, X.; Zhou, X.; Lu, J. B.; Zhu, L. J.; Zhou, J. D. et al. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater. 2022, 34, 2107512.

[83]

Wang, Z.; Gibertini, M.; Dumcenco, D.; Taniguchi, T.; Watanabe, K.; Giannini, E.; Morpurgo, A. F. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat. Nanotechnol. 2019, 14, 1116–1122.

[84]

Bedoya-Pinto, A.; Ji, J. R.; Pandeya, A. K.; Gargiani, P.; Valvidares, M.; Sessi, P.; Taylor, J. M.; Radu, F.; Chang, K.; Parkin, S. S. P. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 2021, 374, 616–620.

[85]

Son, J.; Son, S.; Park, P.; Kim, M.; Tao, Z.; Oh, J.; Lee, T.; Lee, S.; Kim, J.; Zhang, K. X. et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano 2021, 15, 16904–16912.

[86]

Xiao, H.; Zhuang, W. Z.; Loh, L.; Liang, T.; Gayen, A.; Ye, P.; Bosman, M.; Eda, G.; Wang, X. F.; Xu, M. S. Van der Waals epitaxial growth of 2D layered room-temperature ferromagnetic CrS2. Adv. Mater. Interfaces 2022, 9, 2201353.

[87]

Lee, K.; Dismukes, A. H.; Telford, E. J.; Wiscons, R. A.; Wang, J.; Xu, X. D.; Nuckolls, C.; Dean, C. R.; Roy, X.; Zhu, X. Y. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 2021, 21, 3511–3517.

[88]

Telford, E. J.; Dismukes, A. H.; Dudley, R. L.; Wiscons, R. A.; Lee, K.; Chica, D. G.; Ziebel, M. E.; Han, M. G.; Yu, J.; Shabani, S. et al. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 2022, 21, 754–760.

[89]

Zhang, Y.; Chu, J. W.; Yin, L.; Shifa, T. A.; Cheng, Z. Z.; Cheng, R. Q.; Wang, F.; Wen, Y.; Zhan, X. Y.; Wang, Z. X. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 2019, 31, 1900056.

[90]

Wang, M. S.; Kang, L. X.; Su, J. W.; Zhang, L. M.; Dai, H. W.; Cheng, H.; Han, X. T.; Zhai, T. Y.; Liu, Z.; Han, J. B. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale 2020, 12, 16427–16432.

[91]

Zhao, D. P.; Zhang, L. G.; Malik, I. A.; Liao, M. H.; Cui, W. Q.; Cai, X. Q.; Zheng, C.; Li, L. X.; Hu, X. P.; Zhang, D. et al. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films. Nano Res. 2018, 11, 3116–3121.

[92]

Zhao, Z. J.; Zhou, J.; Liu, L. H.; Liu, N. S.; Huang, J. Q.; Zhang, B.; Li, W.; Zeng, Y.; Zhang, T.; Ji, W. et al. Two-dimensional room-temperature magnetic nonstoichiometric Fe7Se8 nanocrystals: Controllable synthesis and magnetic behavior. Nano Lett. 2022, 22, 1242–1250.

[93]

Husremović, S.; Groschner, C. K.; Inzani, K.; Craig, I. M.; Bustillo, K. C.; Ercius, P.; Kazmierczak, N. P.; Syndikus, J.; Van Winkle, M.; Aloni, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 2022, 144, 12167–12176.

[94]

Deng, Y. J.; Yu, Y. J.; Shi, M. Z.; Guo, Z. X.; Xu, Z. H.; Wang, J.; Chen, X. H.; Zhang, Y. B. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900.

[95]

Long, G.; Henck, H.; Gibertini, M.; Dumcenco, D.; Wang, Z.; Taniguchi, T.; Watanabe, K.; Giannini, E.; Morpurgo, A. F. Persistence of magnetism in atomically thin MnPS3 crystals. Nano Lett. 2020, 20, 2452–2459.

[96]

Ni, Z. L.; Haglund, A. V.; Wang, H.; Xu, B.; Bernhard, C.; Mandrus, D. G.; Qian, X.; Mele, E. J.; Kane, C. L.; Wu, L. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled ising order. Nat. Nanotechnol. 2021, 16, 782–787.

[97]

Aapro, M.; Huda, M. N.; Karthikeyan, J.; Kezilebieke, S.; Ganguli, S. C.; Herrero, H. G.; Huang, X.; Liljeroth, P.; Komsa, H. P. Synthesis and properties of monolayer mnse with unusual atomic structure and antiferromagnetic ordering. ACS Nano 2021, 15, 13794–13802.

[98]

Su, J. W.; Wang, M. S.; Liu, G. H.; Li, H. Q.; Han, J. B.; Zhai, T. Y. Air-stable 2D intrinsic ferromagnetic Ta3FeS6 with four months durability. Adv. Sci. 2020, 7, 2001722.

[99]

Zhang, F.; Zheng, B. Y.; Sebastian, A.; Olson, D. H.; Liu, M. Z.; Fujisawa, K.; Pham, Y. T. H.; Jimenez, V. O.; Kalappattil, V.; Miao, L. X. et al. Monolayer vanadium-doped tungsten disulfide: A room-temperature dilute magnetic semiconductor. Adv. Sci. 2020, 7, 2001174.

[100]

Pham, Y. T. H.; Liu, M. Z.; Jimenez, V. O.; Yu, Z. H.; Kalappattil, V.; Zhang, F.; Wang, K.; Williams, T.; Terrones, M.; Phan, M. H. Tunable ferromagnetism and thermally induced spin flip in vanadium-doped tungsten diselenide monolayers at room temperature. Adv. Mater. 2020, 32, 2003607.

[101]

Lyu, B.; Gao, Y. F.; Zhang, Y. J.; Wang, L.; Wu, X. H.; Chen, Y. N.; Zhang, J. S.; Li, G. M.; Huang, Q. L.; Zhang, N. P. et al. Probing the ferromagnetism and spin wave gap in VI3 by helicity-resolved Raman spectroscopy. Nano Lett. 2020, 20, 6024–6031.

[102]

Lin, Z.; Huang, B.; Hwangbo, K.; Jiang, Q. N.; Zhang, Q.; Liu, Z. Y.; Fei, Z. Y.; Lv, H. Y.; Millis, A.; McGuire, M. et al. Magnetism and its structural coupling effects in 2D ising ferromagnetic insulator VI3. Nano Lett. 2021, 21, 9180–9186.

[103]

Chua, R.; Yang, J.; He, X. Y.; Yu, X. J.; Yu, W.; Bussolotti, F.; Wong, P. K. J.; Loh, K. P.; Breese, M. B. H.; Goh, K. E. J. et al. Can reconstructed se-deficient line defects in monolayer VSe2 induce magnetism. Adv. Mater. 2020, 32, 2000693.

[104]

Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 1996, 54, 9353–9358.

[105]

Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1–L7.

[106]

Kent, A. D.; Worledge, D. C. A new spin on magnetic memories. Nat. Nanotechnol. 2015, 10, 187–191.

[107]

Manchon, A.; Železný, J.; Miron, I. M.; Jungwirth, T.; Sinova, J.; Thiaville, A.; Garello, K.; Gambardella, P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 2019, 91, 035004.

[108]

Ramaswamy, R.; Lee, J. M.; Cai, K. M.; Yang, H. Recent advances in spin-orbit torques: Moving towards device applications. Appl. Phys. Rev. 2018, 5, 031107.

[109]

Alghamdi, M.; Lohmann, M.; Li, J. X.; Jothi, P. R.; Shao, Q. M.; Aldosary, M.; Su, T.; Fokwa, B. P. T.; Shi, J. Highly efficient spin-orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 2019, 19, 4400–4405.

[110]

Wang, X.; Tang, J.; Xia, X. X.; He, C. L.; Zhang, J. W.; Liu, Y. Z.; Wan, C. H.; Fang, C.; Guo, C. Y.; Yang, W. L. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw8904.

[111]

Ostwal, V.; Shen, T. T.; Appenzeller, J. Efficient spin-orbit torque switching of the semiconducting van der Waals ferromagnet Cr2Ge2Te6. Adv. Mater. 2020, 32, 1906021.

[112]
Kajale, S. N.; Nguyen, T.; Chao, C. A.; Bono, D. C.; Boonkird, A.; Li, M. D.; Sarkar, D. Current-induced deterministic switching of van der Waals ferromagnet at room temperature. arXiv: 2306.14355. arXiv.org e-Print archive. https://doi.org/10.48550/arXiv.2306.14355 (accessed Jul 29, 2023).
[113]
Li, W. H.; Zhu, W. K.; Zhang, G. J.; Wu, H.; Zhu, S. G.; Li, R. Z.; Zhang, E. Z.; Zhang, X. M.; Deng, Y. C.; Zhang, J. et al. Room-temperature van der Waals 2D ferromagnet switching by spin-orbit torques. arXiv: 2304.10718. arXiv.org e-Print archive. https://doi.org/10.48550/arXiv.2304.10718 (accessed Jul 29, 2023).
DOI
[114]

Wang, Y.; Zhu, D. P.; Wu, Y.; Yang, Y. M.; Yu, J. W.; Ramaswamy, R.; Mishra, R.; Shi, S. Y.; Elyasi, M.; Teo, K. L. et al. Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques. Nat. Commun. 2017, 8, 1364.

[115]

Han, J. H.; Richardella, A.; Siddiqui, S. A.; Finley, J.; Samarth, N.; Liu, L. Q. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 2017, 119, 077702.

[116]

Fujimura, R.; Yoshimi, R.; Mogi, M.; Tsukazaki, A.; Kawamura, M.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y. Current-induced magnetization switching at charge-transferred interface between topological insulator (Bi, Sb)2Te3 and van der Waals ferromagnet Fe3GeTe2. Appl. Phys. Lett. 2021, 119, 032402.

[117]

MacNeill, D.; Stiehl, G. M.; Guimaraes, M. H. D.; Buhrman, R. A.; Park, J.; Ralph, D. C. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 2017, 13, 300–305.

[118]

Shi, S. Y.; Liang, S. H.; Zhu, Z. F.; Cai, K. M.; Pollard, S. D.; Wang, Y.; Wang, J. Y.; Wang, Q. S.; He, P.; Yu, J. W. et al. All-electric magnetization switching and dzyaloshinskii-moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 2019, 14, 945–949.

[119]

Liang, S. H.; Shi, S. Y.; Hsu, C. H.; Cai, K. M.; Wang, Y.; He, P.; Wu, Y.; Pereira, V. M.; Yang, H. Spin-orbit torque magnetization switching in MoTe2/permalloy heterostructures. Adv. Mater. 2020, 32, 2002799.

[120]

Stiehl, G. M.; Li, R. F.; Gupta, V.; El Baggari, I., Jiang, S. W.; Xie, H. C.; Kourkoutis, L. F.; Mak, K. F.; Shan, J.; Buhrman, R. A. et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β-MoTe2. Phys. Rev. B 2019, 100, 184402.

[121]

Kao, I. H.; Muzzio, R.; Zhang, H. T.; Zhu, M. L.; Gobbo, J.; Yuan, S. A.; Weber, D.; Rao, R.; Li, J. H.; Edgar, J. H. et al. Deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in WTe2. Nat. Mater. 2022, 21, 1029–1034.

[122]

Shin, I.; Cho, W. J.; An, E. S.; Park, S.; Jeong, H. W.; Jang, S.; Baek, W. J.; Park, S. Y.; Yang, D. H.; Seo, J. H. et al. Spin-orbit torque switching in an all-van der Waals heterostructure. Adv. Mater. 2022, 34, 2101730.

[123]

Wang, L. Z.; Xiong, J. L.; Cheng, B.; Dai, Y. D.; Wang, F. Y.; Pan, C.; Cao, T. J.; Liu, X. W.; Wang, P. F.; Chen, M. Y. et al. Cascadable in-memory computing based on symmetric writing and readout. Sci. Adv. 2022, 8, eabq6833.

[124]

Ou, Y. X.; Yanez, W.; Xiao, R.; Stanley, M.; Ghosh, S.; Zheng, B. Y.; Jiang, W.; Huang, Y. S.; Pillsbury, T.; Richardella, A. et al. ZrTe2/CrTe2: An epitaxial van der Waals platform for spintronics. Nat. Commun. 2022, 13, 2972.

[125]

Maruyama, T.; Shiota, Y.; Nozaki, T.; Ohta, K.; Toda, N.; Mizuguchi, M.; Tulapurkar, A. A.; Shinjo, T.; Shiraishi, M.; Mizukami, S. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 2009, 4, 158–161.

[126]

Shiota, Y.; Nozaki, T.; Bonell, F.; Murakami, S.; Shinjo, T.; Suzuki, Y. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 2012, 11, 39–43.

[127]

Wang, W. G.; Li, M. G.; Hageman, S.; Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 2012, 11, 64–68.

[128]

Cheng, G. H.; Rahman, M. M.; He, Z. P.; Allcca, A. L.; Rustagi, A.; Stampe, K. A.; Zhu, Y. L.; Yan, S. H.; Tian, S. J.; Mao, Z. Q. et al. Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures. Nat. Commun. 2022, 13, 7348.

[129]

Zhang, X. X.; Li, L. Z.; Weber, D.; Goldberger, J.; Mak, K. F.; Shan, J. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. 2020, 19, 838–842.

[130]

Wang, Z.; Zhang, T. Y.; Ding, M.; Dong, B. J.; Li, Y. X.; Chen, M. L.; Li, X. X.; Huang, J. Q.; Wang, H. W.; Zhao, X. T. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559.

[131]

Tan, C.; Xie, W. Q.; Zheng, G. L.; Aloufi, N.; Albarakati, S.; Algarni, M.; Li, J. B.; Partridge, J.; Culcer, D.; Wang, X. L. et al. Gate-controlled magnetic phase transition in a van der Waals magnet Fe5GeTe2. Nano Lett. 2021, 21, 5599–5605.

[132]

Wang, C. S.; Wang, J.; Xie, W. Q.; Zhang, G. J.; Wu, H.; Zhou, J. H.; Zhu, X. D.; Ning, W.; Wang, G. P.; Tan, C. et al. Sign-tunable exchange bias effect in proton-intercalated Fe3GaTe2 nanoflakes. Phys. Rev. B 2023, 107, L140409.

[133]

Liang, S. C.; Xie, T.; Blumenschein, N. A.; Zhou, T.; Ersevim, T.; Song, Z. H.; Liang, J. R.; Susner, M. A.; Conner, B. S.; Gong, S. J. et al. Small-voltage multiferroic control of two-dimensional magnetic insulators. Nat. Electron. 2023, 6, 199–205.

[134]

Wang, Z.; Sapkota, D.; Taniguchi, T.; Watanabe, K.; Mandrus, D.; Morpurgo, A. F. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018, 18, 4303–4308.

[135]

Min, K. H.; Lee, D. H.; Choi, S. J.; Lee, I. H.; Seo, J.; Kim, D. W.; Ko, K. T.; Watanabe, K.; Taniguchi, T.; Ha, D. H. et al. Tunable spin injection and detection across a van der Waals interface. Nat. Mater. 2022, 21, 1144–1149.

[136]

Zhu, W. K.; Lin, H. L.; Yan, F. G.; Hu, C.; Wang, Z. A.; Zhao, L. X.; Deng, Y. C.; Kudrynskyi, Z. R.; Zhou, T.; Kovalyuk, Z. D. et al. Large tunneling magnetoresistance in van der Waals ferromagnet/semiconductor heterojunctions. Adv. Mater. 2021, 33, 2104658.

[137]

Li, X. L.; Lü, J. T.; Zhang, J.; You, L.; Su, Y. R.; Tsymbal, E. Y. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett. 2019, 19, 5133–5139.

[138]

Jin, W.; Zhang, G. J.; Wu, H.; Yang, L.; Zhang, W. F.; Chang, H. X. Room-temperature spin-valve devices based on Fe3GaTe2/MoS2/Fe3GaTe2 2D van der Waals heterojunctions. Nanoscale 2023, 15, 5371–5378.

[139]

Yin, H. F.; Zhang, P. Z.; Jin, W.; Di, B. Y.; Wu, H.; Zhang, G. J.; Zhang, W. F.; Chang, H. X. Fe3GaTe2/MoSe2 ferromagnet/semiconductor 2D van der Waals heterojunction for room-temperature spin-valve devices. CrystEngComm 2023, 25, 1339–1346.

[140]

Zhu, W. K.; Xie, S. H.; Lin, H. L.; Zhang, G. J.; Wu, H.; Hu, T. G.; Wang, Z. A.; Zhang, X. M.; Xu, J. H.; Wang, Y. J. et al. Large room-temperature magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Chin. Phys. Lett. 2022, 39, 128501.

[141]

Jin, W.; Zhang, G. J.; Wu, H.; Yang, L.; Zhang, W. F.; Chang, H. X. Room-temperature and tunable tunneling magnetoresistance in Fe3GaTe2-based 2D van der Waals heterojunctions. ACS Appl. Mater. Interfaces 2023, 15, 36519–36526.

[142]

Miao, G. X.; Müller, M.; Moodera, J. S. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys. Rev. Lett. 2009, 102, 076601.

[143]

Worledge, D. C.; Geballe, T. H. Magnetoresistive double spin filter tunnel junction. J. Appl. Phys. 2000, 88, 5277–5279.

[144]

Song, T. C.; Cai, X. H.; Tu, M. W. Y.; Zhang, X. O.; Huang, B.; Wilson, N. P.; Seyler, K. L.; Zhu, L.; Taniguchi, T.; Watanabe, K. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218.

[145]

Song, T. C.; Tu, M. W. Y.; Carnahan, C.; Cai, X. H.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Cobden, D. H.; Xiao, D.; Yao, W. et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 2019, 19, 915–920.

[146]

Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoǧlu, A.; Giannini, E.; Morpurgo, A. F. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 2018, 9, 2516.

[147]

Kim, H. H.; Yang, B. W.; Patel, T.; Sfigakis, F.; Li, C. H.; Tian, S. J.; Lei, H. C.; Tsen, A. W. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 2018, 18, 4885–4890.

[148]

Kim, H. H.; Yang, B. W.; Tian, S. J.; Li, C. H.; Miao, G. X.; Lei, H. C.; Tsen, A. W. Tailored tunnel magnetoresistance response in three ultrathin chromium trihalides. Nano Lett. 2019, 19, 5739–5745.

[149]

Ghazaryan, D.; Greenaway, M. T.; Wang, Z.; Guarochico-Moreira, V. H.; Vera-Marun, I. J.; Yin, J.; Liao, Y.; Morozov, S. V.; Kristanovski, O.; Lichtenstein, A. I. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 2018, 1, 344–349.

[150]

Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Shan, J.; Mak, K. F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2019, 2, 159–163.

[151]

Cai, X. H.; Song, T. C.; Wilson, N. P.; Clark, G.; He, M. H.; Zhang, X. O.; Taniguchi, T.; Watanabe, K.; Yao, W.; Xiao, D. et al. Atomically thin CrCl3: An in-plane layered antiferromagnetic insulator. Nano Lett. 2019, 19, 3993–3998.

[152]

Lin, H. L.; Yan, F. G.; Hu, C.; Lv, Q. S.; Zhu, W. K.; Wang, Z. A.; Wei, Z. M.; Chang, K.; Wang, K. Y. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 43921–43926.

[153]

Seol, M.; Lee, M. H.; Kim, H.; Shin, K. W.; Cho, Y.; Jeon, I.; Jeong, M.; Lee, H. I.; Park, J.; Shin, H. J. High-throughput growth of wafer-scale monolayer transition metal dichalcogenide via vertical ostwald ripening. Adv. Mater. 2020, 32, 2003542.

[154]

Kang, K.; Xie, S. F.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

[155]

Tao, J. G.; Chai, J. W.; Lu, X.; Wong, L. M.; Wong, T. I.; Pan, J. S.; Xiong, Q. H.; Chi, D. Z.; Wang, S. J. Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 2015, 7, 2497–2503.

[156]

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

[157]

Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. E.; Sim, S. H.; Song, Y. I, Hong, B. H.; Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.

[158]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[159]

Shim, J.; Bae, S. H.; Kong, W.; Lee, D.; Qiao, K.; Nezich, D.; Park, Y. J.; Zhao, R. K.; Sundaram, S.; Li, X. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 2018, 362, 665–670.

[160]

Liu, F.; Wu, W. J.; Bai, Y. S.; Chae, S. H.; Li, Q. Y.; Wang, J.; Hone, J.; Zhu, X. Y. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 2020, 367, 903–906.

[161]

Johansen, Ø.; Risinggård, V.; Sudbø, A.; Linder, J.; Brataas, A. Current control of magnetism in two-dimensional Fe3GeTe2. Phys. Rev. Lett. 2019, 122, 217203.

[162]

Zhang, K. X.; Han, S.; Lee, Y.; Coak, M. J.; Kim, J.; Hwang, I.; Son, S.; Shin, J.; Lim, M.; Jo, D. et al. Gigantic current control of coercive field and magnetic memory based on nanometer-thin ferromagnetic van der Waals Fe3GeTe2. Adv. Mater. 2021, 33, 2004110.

[163]

Zhang, K. X.; Lee, Y.; Coak, M. J.; Kim, J.; Son, S.; Hwang, I.; Ko, D. S.; Oh, Y.; Jeon, I.; Kim, D. et al. Highly efficient nonvolatile magnetization switching and multi-level states by current in single van der Waals topological ferromagnet Fe3GeTe2. Adv. Funct. Mater. 2021, 31, 2105992.

[164]

Ahmad, H.; Atulasimha, J.; Bandyopadhyay, S. Reversible strain-induced magnetization switching in FeGa nanomagnets: Pathway to a rewritable, non-volatile, non-toggle, extremely low energy straintronic memory. Sci. Rep. 2015, 5, 18264.

[165]

Zhao, Z. Y.; Jamali, M.; D’Souza, N.; Zhang, D. L.; Bandyopadhyay, S.; Atulasimha, J.; Wang, J. P. Giant voltage manipulation of MgO-based magnetic tunnel junctions via localized anisotropic strain: A potential pathway to ultra-energy-efficient memory technology. Appl. Phys. Lett. 2016, 109, 092403.

[166]

Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; Gajek, M.; Han, S. J.; He, Q.; Balke, N.; Yang, C. H.; Lee, D.; Hu, W. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 2008, 7, 478–482.

[167]

Heron, J. T.; Bosse, J. L.; He, Q.; Gao, Y.; Trassin, M.; Ye, L.; Clarkson, J. D.; Wang, C.; Liu, J.; Salahuddin, S. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 2014, 516, 370–373.

[168]

Zhang, T. Y.; Chen, Y. S.; Li, Y. X.; Guo, Z. C.; Wang, Z.; Han, Z.; He, W.; Zhang, J. Laser-induced magnetization dynamics in a van der Waals ferromagnetic Cr2Ge2Te6 nanoflake. Appl. Phys. Lett. 2020, 116, 223103.

[169]

Alahmed, L.; Nepal, B.; Macy, J.; Zheng, W. K.; Casas, B.; Sapkota, A.; Jones, N.; Mazza, A. R.; Brahlek, M.; Jin, W. C. et al. Magnetism and spin dynamics in room-temperature van der Waals magnet Fe5GeTe2. 2D Mater. 2021, 8, 45030.

[170]

Shen, X.; Chen, H. R.; Li, Y.; Xia, H.; Zeng, F. L.; Xu, J.; Kwon, H. Y.; Ji, Y.; Won, C.; Zhang, W. et al. Multi-domain ferromagnetic resonance in magnetic van der Waals crystals CrI3 and CrBr3. J. Magn. Magn. Mater. 2021, 528, 167772.

[171]

Xu, H. J.; Jia, K.; Huang, Y.; Meng, F. Q.; Zhang, Q. H.; Zhang, Y.; Cheng, C.; Lan, G. B.; Dong, J.; Wei, J. W. et al. Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping. Nat. Commun. 2023, 14, 3824.

Publication history
Copyright

Publication history

Received: 14 August 2023
Revised: 22 December 2023
Accepted: 22 December 2023
Published: 24 January 2024
Issue date: February 2024

Copyright

© Tsinghua University Press 2024
Return