Journal Home > Volume 17 , Issue 3

The rapid progress of modern technologies has accelerated the prominence of thermal expansion mismatch between materials, and tunable thermal expansion materials will be a powerful safeguard against this challenge. Here, isotropic MHfF6 (M = Ca, Mn, Fe, and Co) compounds with tunable thermal expansion have been produced via a low-cost synthetic method and investigated. By utilizing temperature dependent X-ray diffraction (XRD) and Raman spectroscopy, combined with first principles calculations, it was revealed that the transverse thermal vibrations of the F atoms are dominated by low-frequency phonons with negative Grüneisen parameters and are therefore the origin of the negative thermal expansion (NTE). Very interestingly, with the increase of the M atomic number, the metal···F atomic linkages become stiffer, reducing the number of vibrational modes with negative Grüneisen parameters, so that the strong NTE can be gradually adjusted to moderate NTE and to near zero thermal expansion. The present study achieves the tunable thermal expansion in a new compound family and shed light on the internal mechanism from the perspective of lattice vibrational dynamics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Simple chemical synthesis and isotropic negative thermal expansion in MHfF6 (M = Ca, Mn, Fe, and Co)

Show Author's information Yongqiang Qiao1Sen Zhang1Peixian Zhang1Juan Guo1Andrea Sanson2Xi Zhen1Kaiyue Zhao1Qilong Gao1( )Jun Chen3( )
Key Laboratory of Materials Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The rapid progress of modern technologies has accelerated the prominence of thermal expansion mismatch between materials, and tunable thermal expansion materials will be a powerful safeguard against this challenge. Here, isotropic MHfF6 (M = Ca, Mn, Fe, and Co) compounds with tunable thermal expansion have been produced via a low-cost synthetic method and investigated. By utilizing temperature dependent X-ray diffraction (XRD) and Raman spectroscopy, combined with first principles calculations, it was revealed that the transverse thermal vibrations of the F atoms are dominated by low-frequency phonons with negative Grüneisen parameters and are therefore the origin of the negative thermal expansion (NTE). Very interestingly, with the increase of the M atomic number, the metal···F atomic linkages become stiffer, reducing the number of vibrational modes with negative Grüneisen parameters, so that the strong NTE can be gradually adjusted to moderate NTE and to near zero thermal expansion. The present study achieves the tunable thermal expansion in a new compound family and shed light on the internal mechanism from the perspective of lattice vibrational dynamics.

Keywords: chemical synthesis, negative thermal expansion, fluorides, nanosheet structure, first principles calculations

References(59)

[1]

Zhang, Y.; Chen, B.; Guan, D. Q.; Xu, M. G.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. P. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251.

[2]

Liao, J. S.; Wang, M. H.; Lin, F. L.; Han, Z.; Fu, B.; Tu, D. T.; Chen, X. Y.; Qiu, B.; Wen, H. R. Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3: Yb/Er with two-dimensional negative thermal expansion. Nat. Commun. 2022, 13, 2090.

[3]

Du, K.; Gao, A.; Gao, L. F.; Sun, S. W.; Lu, X.; Yu, C. Y.; Li, S. Y.; Zhao, H. L.; Bai, Y. Enhancing the structure stability of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via encapsulating in negative thermal expansion nanocrystalline shell. Nano Energy 2021, 83, 105775.

[4]

Shi, X. W.; Zhang, S.; Zhou, Q.; Li, J.; Zhu, B. L.; Xu, L. J.; Gao, Q. L. Effect of surface modification on thermal expansion of Zr2WP2O12/aromatic polyimides based composites. Tungsten 2023, 5, 179–188.

[5]

Liang, E. J.; Sun, Q.; Yuan, H. L.; Wang, J. Q.; Zeng, G. J.; Gao, Q. L. Negative thermal expansion: Mechanisms and materials. Front. Phys. 2021, 16, 53302.

[6]

Mary, T. A.; Evans, J. S. O.; Vogt, T.; Sleight, A. W. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996, 272, 90–92.

[7]

Qiao, Y. Q.; Xiao, N.; Song, Y. Z.; Deng, S. Q.; Huang, R. J.; Li, L. F.; Xing, X. R.; Chen, J. Achieving high performances of ultra-low thermal expansion and high thermal conductivity in 0.5PbTiO3-0.5(Bi0.9La0.1)FeO3@Cu core–shell composite. ACS Appl. Mater. Interfaces 2020, 12, 57228–57234.

[8]

Yu, C. Y.; Lin, K.; Jiang, S. H.; Cao, Y. L.; Li, W. J.; Wang, Y. L.; Chen, Y.; An, K.; You, L.; Kato, K. et al. Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite. Nat. Commun. 2021, 12, 4701.

[9]

Takenaka, K.; Ichigo, M. Thermal expansion adjustable polymer matrix composites with giant negative thermal expansion filler. Compos. Sci. Technol. 2014, 104, 47–51.

[10]

Shi, N. K.; Sanson, A.; Gao, Q. L.; Sun, Q.; Ren, Y.; Huang, Q. Z.; de Souza, D. O.; Xing, X. R.; Chen, J. Strong negative thermal expansion in a low-cost and facile oxide of Cu2P2O7. J. Am. Chem. Soc. 2020, 142, 3088–3093.

[11]

Pachoud, E.; Cumby, J.; Lithgow, C. T.; Attfield, J. P. Charge order and negative thermal expansion in V2OPO4. J. Am. Chem. Soc. 2018, 140, 636–641.

[12]

Nishikubo, T.; Sakai, Y.; Oka, K.; Watanuki, T.; Machida, A.; Mizumaki, M.; Maebayashi, K.; Imai, T.; Ogata, T.; Yokoyama, K. et al. Enhanced negative thermal expansion induced by simultaneous charge transfer and polar-nonpolar transitions. J. Am. Chem. Soc. 2019, 141, 19397–19403.

[13]

Jiang, X. X.; Molokeev, M. S.; Gong, P. F.; Yang, Y.; Wang, W.; Wang, S. H.; Wu, S. F.; Wang, Y. X.; Huang, R. J.; Li, L. F. et al. Near-zero thermal expansion and high ultraviolet transparency in a borate crystal of Zn4B6O13. Adv. Mater. 2016, 28, 7936–7940.

[14]

Xie, L. L.; Shi, T. F.; Lin, J. C.; Zhang, X. K.; Zhong, X. K.; Liu, K. K.; Dong, B. K.; Yang, C.; Wang, X. L.; Xiong, T. J. et al. The enhanced negative thermal expansion in less-oxygen-vacancies copper pyrophosphate. J. Mater. Sci. Technol. 2023, 146, 80–85.

[15]

Wang, H.; Yang, M. J.; Chao, M. J.; Guo, J.; Gao, Q. L.; Jiao, Y. J.; Tang, X. B.; Liang, E. J. Negative thermal expansion property of β-Cu2V2O7. Solid State Ion. 2019, 343, 115086.

[16]

Du, Y. G.; Gao, Q. L.; Sanson, A.; Xie, H. L.; Hu, Y. M.; Zeng, G. J.; Guo, J.; Ren, X.; Liang, E. J. Optimized negative thermal expansion property in low-cost Mg2P2O7-based bulk material. Results Phys. 2022, 35, 105415.

[17]

Hu, L.; Chen, J.; Sanson, A.; Wu, H.; Rodriguez, C. G.; Olivi, L.; Ren, Y.; Fan, L. L.; Deng, J. X.; Xing, X. R. New insights into the negative thermal expansion: Direct experimental evidence for the “Guitar-String” effect in cubic ScF3. J. Am. Chem. Soc. 2016, 138, 8320–8323.

[18]

Chen, J.; Gao, Q. L.; Sanson, A.; Jiang, X. X.; Huang, Q. Z.; Carnera, A.; Rodriguez, C. G.; Olivi, L.; Wang, L.; Hu, L. et al. Tunable thermal expansion in framework materials through redox intercalation. Nat. Commun. 2017, 8, 14441.

[19]

Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P. Pronounced negative thermal expansion from a simple structure: Cubic ScF3. J. Am. Chem. Soc. 2010, 132, 15496–15498.

[20]

Goodwin, A. L.; Calleja, M.; Conterio, M. J.; Dove, M. T.; Evans, J. S. O.; Keen, D. A.; Peters, L.; Tucker, M. G. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 2008, 319, 794–797.

[21]

Gao, Q. L.; Chen, J.; Sun, Q.; Chang, D. H.; Huang, Q. Z.; Wu, H.; Sanson, A.; Milazzo, R.; Zhu, H.; Li, Q. et al. Switching between giant positive and negative thermal expansions of a YFe(CN)6-based prussian blue analogue induced by guest species. Angew. Chem., Int. Ed. 2017, 56, 9023–9028.

[22]

Gao, Q. L.; Jiao, Y. X.; Zheng, Y.; Sanson, A.; Milazzo, R.; Olivi, L.; Sun, Q.; Chen, J.; Liang, E. J. Understanding the role of guest ions in the control of thermal expansion of FeFe(CN)6. Results Phys. 2022, 36, 105410.

[23]

Qiao, Y. Q.; Song, Y. Z.; Sanson, A.; Fan, L. L.; Sun, Q.; Hu, S. X.; He, L. H.; Zhang, H. J.; Xing, X. R.; Chen, J. Negative thermal expansion in YbMn2Ge2 induced by the dual effect of magnetism and valence transition. npj Quantum Mater. 2021, 6, 49.

[24]

Cao, Y. L.; Lin, K.; Khmelevskyi, S.; Avdeev, M.; Taddei, K. M.; Zhang, Q.; Huang, Q. Z.; Li, Q.; Kato, K.; Tang, C. C. et al. Ultrawide temperature range super-Invar behavior of R2(Fe, Co)17 materials (R = rare earth). Phys. Rev. Lett. 2021, 127, 055501.

[25]

Zhao, Y. Y.; Hu, F. X.; Bao, L. F.; Wang, J.; Wu, H.; Huang, Q. Z.; Wu, R. R.; Liu, Y.; Shen, F. R.; Kuang, H. et al. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. J. Am. Chem. Soc. 2015, 137, 1746–1749.

[26]

Deng, S. H.; Sun, Y.; Wu, H.; Huang, Q. Z.; Yan, J.; Shi, K. W.; Malik, M. I.; Lu, H. Q.; Wang, L.; Huang, R. J. et al. Invar-like behavior of antiperovskite Mn3+ x Ni1− x N compounds. Chem. Mater. 2015, 27, 2495–2501.

[27]

Takenaka, K.; Ichigo, M.; Hamada, T.; Ozawa, A.; Shibayama, T.; Inagaki, T.; Asano, K. Magnetovolume effects in manganese nitrides with antiperovskite structure. Sci. Technol. Adv. Mater. 2014, 15, 015009.

[28]

Song, X. Y.; Sun, Z. H.; Huang, Q. Z.; Rettenmayr, M.; Liu, X. M.; Seyring, M.; Li, G. N.; Rao, G. H.; Yin, F. X. Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv. Mater. 2011, 23, 4690–4694.

[29]

Pang, X. L.; Song, Y. Z.; Shi, N. K.; Xu, M.; Zhou, C.; Chen, J. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites. Compos. Part B: Eng. 2022, 238, 109883.

[30]

Zhang, W. Y.; He, L.; Zhou, Y. X.; Tang, D. Y.; Ding, B.; Zhou, C.; Dyson, P. J.; Nazeeruddin, M. K.; Li, X. Multiple roles of negative thermal expansion material for high-performance fully-air processed perovskite solar cells. Chem. Eng. J. 2023, 457, 141216.

[31]

Li, C. W.; Tang, X. L.; Muñoz, J. A.; Keith, J. B.; Tracy, S. J.; Abernathy, D. L.; Fultz, B. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys. Rev. Lett. 2011, 107, 195504.

[32]

Hu, L.; Chen, J.; Xu, J. L.; Wang, N.; Han, F.; Ren, Y.; Pan, Z.; Rong, Y. C.; Huang, R. J.; Deng, J. X. et al. Atomic linkage flexibility tuned isotropic negative, zero, and positive thermal expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). J. Am. Chem. Soc. 2016, 138, 14530–14533.

[33]

Gupta, M. K.; Singh, B.; Mittal, R.; Chaplot, S. L. Negative thermal expansion behavior in MZrF6 (M = Ca, Mg, Sr): Ab initio lattice dynamical studies. Phys. Rev. B 2018, 98, 014301.

[34]

Hancock, J. C.; Chapman, K. W.; Halder, G. J.; Morelock, C. R.; Kaplan, B. S.; Gallington, L. C.; Bongiorno, A.; Han, C.; Zhou, S.; Wilkinson, A. P. Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-Type AIIBIVF6: CaZrF6 and CaHfF6. Chem. Mater. 2015, 27, 3912–3918.

[35]

Hester, B. R.; Wilkinson, A. P. Negative thermal expansion, response to pressure and phase transitions in CaTiF6. Inorg. Chem. 2018, 57, 11275–11281.

[36]

Xu, J. L.; Hu, L.; Song, Y. Z.; Han, F.; Qiao, Y. Q.; Deng, J. X.; Chen, J.; Xianran Xing, X. R. Zero thermal expansion in cubic MgZrF6. J. Am. Ceram. Soc. 2017, 100, 5385–5388.

[37]

Hester, B. R.; Hancock, J. C.; Lapidus, S. H.; Wilkinson, A. P. Composition, response to pressure, and negative thermal expansion in MIIBIVF6 (M = Ca, Mg; B = Zr, Nb). Chem. Mater. 2017, 29, 823–831.

[38]

Gao, Q. L.; Zhang, S.; Jiao, Y. X.; Qiao, Y. Q.; Sanson, A.; Sun, Q.; Shi, X. W.; Liang, E. J.; Chen, J. A new isotropic negative thermal expansion material of CaSnF6 with facile and low-cost synthesis. Nano Res. 2023, 16, 5964–5972.

[39]

Rimmer, L. H. N.; Dove, M. T.; Goodwin, A. L.; Palmer, D. C. Acoustic phonons and negative thermal expansion in MOF-5. Phys. Chem. Chem. Phys. 2014, 16, 21144–21152.

[40]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[41]

Wang, Z. Y.; Wang, F.; Wang, L.; Jia, Y.; Sun, Q. First-principles study of negative thermal expansion in zinc oxide. J. Appl. Phys. 2013, 114, 063508.

[42]

Gupta, M. K.; Singh, B.; Mittal, R.; Rols, S.; Chaplot, S. L. Lattice dynamics and thermal expansion behavior in the metal cyanides MCN (M = Cu, Ag, Au): Neutron inelastic scattering and first-principles calculations. Phys. Rev. B 2016, 93, 134307.

[43]

Karsch, F.; Patkós, A.; Petreczky, P. Screened perturbation theory. Phys. Lett. B 1997, 401, 69–73.

[44]

Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066.

[45]

Zhen, X.; Sanson, A.; Sun, Q.; Liang, E. J.; Gao, Q. L. Role of alkali ions in the near-zero thermal expansion of NaSICON-type AZr2(PO4)3 (A = Na, K, Rb, Cs) and Zr2(PO4)3 compounds. Phys. Rev. B 2023, 108, 144102.

[46]

Wang, L.; Chen, Y.; Ni, J.; Ye, F.; Wang, C. Anharmonic interaction in negative thermal expansion material CaTiF6. Inorg. Chem. 2022, 61, 17378–17386.

[47]

Hester, B. R.; Wilkinson, A. P. Effects of composition on crystal structure, thermal expansion, and response to pressure in ReO3-type MNbF6 (M = Mn and Zn). J. Solid State Chem. 2019, 269, 428–433.

[48]

Gao, Q. L.; Shi, N. K.; Sanson, A.; Sun, Y.; Milazzo, R.; Olivi, L.; Zhu, H.; Lapidus, S. H.; Zheng, L. R.; Chen, J. et al. Tunable thermal expansion from negative, zero, to positive in cubic prussian blue analogues of GaFe(CN)6. Inorg. Chem. 2018, 57, 14027–14030.

[49]

Hu, L.; Chen, J.; Fan, L. L.; Deng, J. X.; Yu, R. B.; Xing, X. R. Rapid molten salt synthesis of isotropic negative thermal expansion ScF3. J. Am. Ceram. Soc. 2014, 97, 1009–1011.

[50]

Ravindran, T. R.; Arora, A. K.; Mary, T. A. High pressure behavior of ZrW2O8: Grüneisen parameter and thermal properties. Phys. Rev. Lett. 2000, 84, 3879–3882.

[51]

Sanson, A.; Giarola, M.; Mariotto, G.; Hu, L.; Chen, J.; Xing, X. R. Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations. Mater. Chem. Phys. 2016, 180, 213–218.

[52]

Yang, C.; Qu, B. Y.; Pan, S. S.; Zhang, L.; Zhang, R. R.; Tong, P.; Xiao, R. C.; Lin, J. C.; Guo, X. G.; Zhang, K. et al. Large positive thermal expansion and small band gap in double-ReO3-type compound NaSbF6. Inorg. Chem. 2017, 56, 4990–4995.

[53]

Lucazeau, G. Effect of pressure and temperature on Raman spectra of solids: Anharmonicity. J. Raman Spectrosc. 2003, 34, 478–496.

[54]

Salke, N. P.; Gupta, M. K.; Rao, R.; Mittal, R.; Deng, J. X.; Xing, X. R. Raman and ab initio investigation of negative thermal expansion material TaVO5: Insights into phase stability and anharmonicity. J. Appl. Phys. 2015, 117, 235902.

[55]

Ravindran, T. R.; Arora, A. K.; Mary, T. A. Anharmonicity and negative thermal expansion in zirconium tungstate. Phys. Rev. B 2003, 67, 064301.

[56]

Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.

[57]

Steinberg, S.; Dronskowski, R. The crystal orbital Hamilton population (COHP) method as a tool to visualize and analyze chemical bonding in intermetallic compounds. Crystals 2018, 8, 225.

[58]

Gao, Q. L.; Wang, J. Q.; Sanson, A.; Sun, Q.; Liang, E. J.; Xing, X. R.; Chen, J. Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume. J. Am. Chem. Soc. 2020, 142, 6935–6939.

[59]

Sanson, A. On the switching between negative and positive thermal expansion in framework materials. Mater. Res. Lett. 2019, 7, 412–417.

File
12274_2024_6445_MOESM1_ESM.pdf (808.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 November 2023
Revised: 11 December 2023
Accepted: 22 December 2023
Published: 25 January 2024
Issue date: March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22071221 and 21905252) and Natural Science Foundation of Henan Province (Nos. 212300410086, 222301420040 and 222300420325). All calculations were supported by the National Supercomputing Center in Zhengzhou.

Return