AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Liquid-phase epitaxial layer by layer brushing fabrication of metal-organic frameworks films

Li-Mei Chang1,2Rui Zhai2Zhi-Zhou Ma2,3Jian-Dong Huang1Zhi-Gang Gu2,3( )Jian Zhang2,3
College of Chemistry, Fuzhou University, Fuzhou 350108, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

A facile and universal method of liquid-phase epitaxial (LPE) layer by layer (LBL) brushing approach has been developed for metal-organic frameworks (MOF) films fabrication on various substrates, which offers a great prospective to cost-effectively construct films with short preparation time and little reagent consumption in a high-throughput fashion. Moreover, the representative MOF HKUST-1 and zeolitic imidazolate framework (ZIF)-8 films were grown on sensor chip, and porous fiber support has good volatile organic compounds (VOCs) selective sensing and water purification. This study demonstrates that this LPE LBL brushing method can be employed to synthesize various MOF films with a variety of characteristics.

Abstract

Development of metal-organic framework (MOF) films is of great importance to expand their applications. Herein, we report a facile and universal method of liquid-phase epitaxial (LPE) layer by layer (LBL) brushing approach for fabricating MOF films on various substrates in a high-throughput fashion. This MOF films preparation method offers a great prospective to cost-effectively construct films with short preparation time and little reagent consumption. Moreover, this LBL brushing approach has been implemented successfully to assemble various MOF films, including HKUST-1, zeolitic imidazolate framework-8 (ZIF-8), Cu(bdc), and Cu2(L)2P (L = bdc, ndc, and cam; P = dabco and bipy). Afterwards, the classic MOF HKUST-1 and ZIF-8 films were grown on sensor chip electrode and porous fiber support for good volatile organic compounds (VOCs) selective sensing and water purification applications. This study demonstrates that this LBL brushing preparation method can be employed to synthesize various MOF films with a variety of characteristics to realize their sensing and separation applications.

Electronic Supplementary Material

Download File(s)
12274_2024_6444_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Guo, Z. Y.; Richardson, J. J.; Kong, B.; Liang, K. Nanobiohybrids: Materials approaches for bioaugmentation. Sci. Adv. 2020, 6, eaaz0330.

[2]

Liang, S.; Wu, X. L.; Xiong, J.; Zong, M. H.; Lou, W. Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213149.

[3]

Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

[4]

Chen, Z.; Wang, R.; Ma, T.; Wang, J. L.; Duan, Y.; Dai, Z. Z.; Xu, J.; Wang, H. J.; Yuan, J. Y.; Jiang, H. L. et al. Large-area crystalline zeolitic imidazolate framework thin films. Angew. Chem., Int. Ed. 2021, 60, 14124–14130.

[5]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[6]

Wu, D.; Zhang, P. F.; Yang, G. P.; Hou, L.; Zhang, W. Y.; Han, Y. F.; Liu, P.; Wang, Y. Y. Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coord. Chem. Rev. 2021, 434, 213709.

[7]

Sabo, M.; Henschel, A.; Fröde, H.; Klemm, E.; Kaskel, S. Solution infiltration of palladium into MOF-5: Synthesis, physisorption and catalytic properties. J. Mater. Chem. 2007, 17, 3827–3832.

[8]

Zhu, Y. D.; Kang, Y.; Gu, Z. G.; Zhang, J. Step by step bisacrificial templates growth of bimetallic sulfide QDs-attached MOF nanosheets for nonlinear optical limiting. Adv. Opt. Mater. 2021, 9, 2002072.

[9]

Ma, Q. L.; He, Q. Y.; Yin, P. F.; Cheng, H. F.; Cui, X. Y.; Yun, Q. B.; Zhang, H. Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 2020, 32, 2003720.

[10]

Cerasale, D. J.; Ward, D. C.; Easun, T. L. MOFs in the time domain. Nat. Rev. Chem. 2022, 6, 9–30.

[11]

Cao, J.; Li, X. J.; Tian, H. Q. Metal-organic framework (MOF)-based drug delivery. Curr. Med. Chem. 2020, 27, 5949–5969.

[12]

He, X. Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 2023, 15, 148.

[13]

Tang, X. X.; Liu, C.; Wang, H.; Lv, L. P.; Sun, W. W.; Wang, Y. Pristine metal-organic frameworks for next-generation batteries. Coord. Chem. Rev. 2023, 494, 215361.

[14]

Ma, Z. Z.; Li, Q. H.; Wang, Z. R.; Gu, Z. G.; Zhang, J. Electrically regulating nonlinear optical limiting of metal-organic framework film. Nat. Commun. 2022, 13, 6347.

[15]

Tian, Y. B.; Vankova, N.; Weidler, P.; Kuc, A.; Heine, T.; Wöll, C.; Gu, Z. G.; Zhang, J. Oriented growth of in-oxo chain based metal-porphyrin framework thin film for high-sensitive photodetector. Adv. Sci. 2021, 8, 2100548.

[16]

Cao, L. A.; Yao, M. S.; Jiang, H. J.; Kitagawa, S.; Ye, X. L.; Li, W. H.; Xu, G. A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. J. Mater. Chem. A 2020, 8, 9085–9090.

[17]

Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.

[18]

Rassu, P.; Ma, X. J.; Wang, B. Engineering of catalytically active sites in photoactive metal-organic frameworks. Coord. Chem. Rev. 2022, 465, 214561.

[19]

Ren, X. H.; Liao, G. C.; Li, Z. J.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X. et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coord. Chem. Rev. 2021, 435, 213781.

[20]

Kang, X. C.; Wang, B.; Hu, K.; Lyu, K.; Han, X.; Spencer, B. F.; Frogley, M. D.; Tuna, F.; McInnes, E. J. L.; Dryfe, R. A. W. et al. Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 17384–17392.

[21]

Lv, X. L.; Feng, L.; Xie, L. H.; He, T.; Wu, W.; Wang, K. Y.; Si, G. R.; Wang, B.; Li, J. R.; Zhou, H. C. Linker desymmetrization: Access to a series of rare-earth tetracarboxylate frameworks with eight-connected hexanuclear nodes. J. Am. Chem. Soc. 2021, 143, 2784–2791.

[22]

Hao, Y. C.; Chen, L. W.; Li, J. N.; Guo, Y.; Su, X.; Shu, M.; Zhang, Q. H.; Gao, W. Y.; Li, S. W.; Yu, Z. L. et al. Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 2021, 12, 2682.

[23]

Gu, Z. G.; Zhang, J. Epitaxial growth and applications of oriented metal-organic framework thin films. Coord. Chem. Rev. 2019, 378, 513–532.

[24]

Liu, J. X.; Wöll, C. Surface-supported metal-organic framework thin films: Fabrication methods, applications, and challenges. Chem. Soc. Rev. 2017, 46, 5730–5770.

[25]

Xiao, Y. H.; Gu, Z. G.; Zhang, J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. Nanoscale 2020, 12, 12712–12730.

[26]

Gu, Z. G.; Pfriem, A.; Hamsch, S.; Breitwieser, H.; Wohlgemuth, J.; Heinke, L.; Gliemann, H.; Wöll, C. Transparent films of metal-organic frameworks for optical applications. Microporous Mesoporous Mater. 2015, 211, 82–87.

[27]

Yu, Q.; Jin, R. R.; Zhao, L. P.; Wang, T. S.; Liu, F. M.; Yan, X.; Wang, C. G.; Sun, P.; Lu, G. Y. MOF-derived mesoporous and hierarchical hollow-structured In2O3-NiO composites for enhanced triethylamine sensing. ACS Sens. 2021, 6, 3451–3461.

[28]

Jin, J.; Li, P.; Chun, D. H.; Jin, B. J.; Zhang, K.; Park, J. H. Defect dominated hierarchical Ti-metal-organic frameworks via a linker competitive coordination strategy for toluene removal. Adv. Funct. Mater. 2021, 31, 2102511.

[29]

Li, H. Y.; Zhao, S. N.; Zang, S. Q.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401.

[30]

Siu, B.; Chowdhury, A. R.; Yan, Z. W.; Humphrey, S. M.; Hutter, T. Selective adsorption of volatile organic compounds in metal-organic frameworks (MOFs). Coord. Chem. Rev. 2023, 485, 215119.

[31]

Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C. MOF thin films: Existing and future applications. Chem. Soc. Rev. 2011, 40, 1081–1106.

[32]

Zybaylo, O.; Shekhah, O.; Wang, H.; Tafipolsky, M.; Schmid, R.; Johannsmann, D.; Wöll, C. A novel method to measure diffusion coefficients in porous metal-organic frameworks. Phys. Chem. Chem. Phys. 2010, 12, 8093–8098.

[33]

Chen, H.; Gu, Z. G.; Zhang, J. Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chem. Sci. 2021, 12, 12346–12352.

[34]

Zhai, R.; Xiao, Y. H.; Gu, Z. G.; Zhang, J. Tunable chiroptical application by encapsulating achiral lanthanide complexes into chiral MOF thin films. Nano Res. 2022, 15, 1102–1108.

[35]

Li, D. J.; Gu, Z. G.; Vohra, I.; Kang, Y.; Zhu, Y. S.; Zhang, J. Epitaxial growth of oriented metalloporphyrin network thin film for improved selectivity of volatile organic compounds. Small 2017, 13, 1604035.

[36]

Heinke, L.; Gu, Z. G.; Wöll, C. The surface barrier phenomenon at the loading of metal-organic frameworks. Nat. Commun. 2014, 5, 4562.

[37]

Li, Y. G.; Liang, C. E.; Shen, Y.; Huang, W. H.; Li, Q. Q.; Liu, J. N.; Zhang, J.; Deng, P.; Bashir, S.; Fang, Q. L. Porous La2O2CO3 derived from solvent-guided metal-organic frameworks for high-efficient phosphorus removal. Sep. Purif. Technol. 2023, 324, 124559.

[38]

Zhou, Z. H.; Zhu, Q. Q.; Liu, Y.; Zhang, Y.; Jia, Z. R.; Wu, G. L. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 2023, 15, 137.

[39]

Chen, C. C.; Jin, L. J.; Dong, H. L.; Jiang, J.; Feng, H.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Lu, J. M. Modulating adsorption of active hydrogen atoms on palladium nanoparticles: Doping ruthenium into metal-organic frameworks for efficient electrocatalytic hydrodechlorination. Sep. Purif. Technol. 2023, 324, 124527.

Nano Research
Pages 5698-5704
Cite this article:
Chang L-M, Zhai R, Ma Z-Z, et al. Liquid-phase epitaxial layer by layer brushing fabrication of metal-organic frameworks films. Nano Research, 2024, 17(6): 5698-5704. https://doi.org/10.1007/s12274-024-6444-5
Topics:

496

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 16 October 2023
Revised: 05 December 2023
Accepted: 22 December 2023
Published: 02 February 2024
© Tsinghua University Press 2024
Return