Journal Home > Volume 17 , Issue 6

Lithium–sulfur (Li–S) batteries have been considered as promising energy storage systems due to the merits of high energy density and low cost. However, the lithium polysulfides (LiPSs) diffusion and sluggish redox kinetics hamper the battery performance. In this work, low-bandgap indium oxide (In2O3) with dense oxygen vacancies (In2O3−x, 0 < x < 3) confined in nitrogen-doped carbon column (NC) is developed as a desirable LiPSs immobilizer and promoter to address these intractable problems. The NC confined In2O3−x with rich O vacancies (In2O3−x@NC) lowers the bandgap of 1.78 eV, strengthens the chemical adsorbability to LiPSs, and catalyzes the bidirectional Li2S redox. Attributed to the structural and chemical cooperativities, the obtained sulfur electrodes exhibit a stable cycling over 550 cycles at 1.0 C and splendid rate capability up to 4.0 C. More significantly, when the sulfur-loading reaches as high as 5.5 mg·cm−2, the cathodes achieve an areal capacity of 5.12 mAh·cm−2 at 0.1 C. The strategy of NC confined catalyst with rich defects engineering demonstrates great promise in the development of practical Li–S batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Manipulating fast Li2S redox via carbon confinement and oxygen defect engineering of In2O3 for lithium–sulfur batteries

Show Author's information Jinlei QinRui WangZilong YuanPei XiaoDeli Wang( )
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Lithium–sulfur (Li–S) batteries have been considered as promising energy storage systems due to the merits of high energy density and low cost. However, the lithium polysulfides (LiPSs) diffusion and sluggish redox kinetics hamper the battery performance. In this work, low-bandgap indium oxide (In2O3) with dense oxygen vacancies (In2O3−x, 0 < x < 3) confined in nitrogen-doped carbon column (NC) is developed as a desirable LiPSs immobilizer and promoter to address these intractable problems. The NC confined In2O3−x with rich O vacancies (In2O3−x@NC) lowers the bandgap of 1.78 eV, strengthens the chemical adsorbability to LiPSs, and catalyzes the bidirectional Li2S redox. Attributed to the structural and chemical cooperativities, the obtained sulfur electrodes exhibit a stable cycling over 550 cycles at 1.0 C and splendid rate capability up to 4.0 C. More significantly, when the sulfur-loading reaches as high as 5.5 mg·cm−2, the cathodes achieve an areal capacity of 5.12 mAh·cm−2 at 0.1 C. The strategy of NC confined catalyst with rich defects engineering demonstrates great promise in the development of practical Li–S batteries.

Keywords: oxygen vacancies, Li–S batteries, nitrogen-doped carbon confinement, bidirectional Li2S redox

References(49)

[1]

Peng, H. J.; Huang, J. Q.; Zhang, Q. A review of flexible lithium–sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 2017, 46, 5237–5288.

[2]

Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 2018, 30, 1705590.

[3]

Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Cheng, X. B.; Xu, W. T.; Zhao, C. Z.; Wei, F.; Zhang, Q. Healing high-loading sulfur electrodes with unprecedented long cycling life: Spatial heterogeneity control. J. Am. Chem. Soc. 2017, 139, 8458–8466.

[4]

Su, D. W.; Zhou, D.; Wang, C. Y.; Wang, G. X. Toward high performance lithium–sulfur batteries based on Li2S cathodes and beyond: Status, challenges, and perspectives. Adv. Funct. Mater. 2018, 28, 1800154.

[5]

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

[6]

Guo, P. Q.; Chen, W. X.; Zhou, Y. F.; Xie, F. Y.; Qian, G. Y.; Jiang, P. F.; He, D. Y.; Lu, X. Transition metal d-band center tuning by interfacial engineering to accelerate polysulfides conversion for robust lithium–sulfur batteries. Small 2022, 18, 2205158.

[7]

Zhang, M.; Chen, W.; Xue, L. X.; Jiao, Y.; Lei, T. Y.; Chu, J. W.; Huang, J. W.; Gong, C. H.; Yan, C. Y.; Yan, Y. C. et al. Adsorption-catalysis design in the lithium–sulfur battery. Adv. Energy Mater. 2020, 10, 1903008.

[8]

Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 2016, 7, 11203.

[9]

Chen, Y. W.; Niu, S. Z.; Lv, W.; Zhang, C.; Yang, Q. H. Promoted conversion of polysulfides by MoO2 inlaid ordered mesoporous carbons towards high performance lithium–sulfur batteries. Chin. Chem. Lett. 2019, 30, 521–524.

[10]

Liu, T. F.; Hu, H. L.; Ding, X. F.; Yuan, H. D.; Jin, C. B.; Nai, J. W.; Liu, Y. J.; Wang, Y.; Wan, Y. H.; Tao, X. Y. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 2020, 30, 346–366

[11]

Shen, Z. H.; Jin, X.; Tian, J. M.; Li, M.; Yuan, Y. F.; Zhang, S.; Fang, S. S.; Fan, X.; Xu, W. G.; Lu, H. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 2022, 5, 555–563.

[12]

Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

[13]

Shi, Z. X.; Ding, Y. F.; Zhang, Q.; Sun, J. Y. Electrocatalyst modulation toward bidirectional sulfur redox in Li–S batteries: From strategic probing to mechanistic understanding. Adv. Energy Mater. 2022, 12, 2201056.

[14]

Wang, P.; Xi, B. J.; Huang, M.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 2021, 11, 2002893.

[15]

Fan, S.; Huang, S. Z.; Pam, M. E.; Chen, S.; Wu, Q. Y.; Hu, J. P.; Wang, Y.; Ang, L. K.; Yan, C. C.; Shi, Y. M. et al. Design multifunctional catalytic interface: Toward regulation of polysulfide and Li2S redox conversion in Li–S batteries. Small 2019, 15, 1906132.

[16]

Li, Y. D.; Zhang, Q.; Shen, S. M.; Wang, S. Q.; Shi, L. L.; Liu, D. Q.; Fu, Y. J.; He, D. Y. Multi-perspective synergistic construction of dual-functional heterostructures for high-temperature Li–S batteries. Chem. Eng. J. 2023, 468, 143562.

[17]

Qin, J. L.; Wang, R.; Xiao, P.; Wang, D. L. Superlattice and defect engineering enabled NC@VS2− x as trifunctional promoter for polysulfides catalytic conversion. Nano Energy 2023, 117, 108889.

[18]

Qin, J. L.; Lu, Y.; Wang, R.; Li, Z. Z.; Shen, T.; Wang, D. L. Sulfurization accelerator coupled Fe1− x S electrocatalyst boosting SPAN cathode performance. Nano Res. 2023, 16, 9231–9239.

[19]

Shi, Z. X.; Li, M.; Sun, J. Y.; Chen, Z. W. Defect engineering for expediting Li–S chemistry: Strategies, mechanisms, and perspectives. Adv. Energy Mater. 2021, 11, 2100332.

[20]

Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Yang, X. Z.; Wei, C. H.; Wang, M. L.; Ding, Y. F.; Sun, J. Y. Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li–S batteries. Adv. Mater. 2021, 33, 2103050.

[21]

Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; Xi, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.

[22]

Li, H. J.; Song, Y. H.; Xi, K.; Wang, W.; Liu, S.; Li, G. R.; Gao, X. P. Sulfur vacancies in Co9S8− x /N-doped graphene enhancing the electrochemical kinetics for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2021, 9, 10704–10713.

[23]

Qi, Y. H.; Song, L. Z.; Ouyang, S. X.; Liang, X. C.; Ning, S. B.; Zhang, Q. Q.; Ye, J. H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D black In2O3− x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 2020, 32, 1903915.

[24]

Hua, W. X.; Li, H.; Pei, C.; Xia, J. Y.; Sun, Y. F.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B. S. et al. Selective catalysis remedies polysulfide shuttling in lithium–sulfur batteries. Adv. Mater. 2021, 33, 2101006.

[25]

Yao, H. B.; Zheng, G. Y.; Hsu, P. C.; Kong, D. S.; Cha, J. J.; Li, W. Y.; Seh, Z. W.; McDowell, M. T.; Yan, K.; Liang, Z. et al. Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 2014, 5, 3943.

[26]

Zhang, C. Q.; Fei, B.; Yang, D. W.; Zhan, H. B.; Wang, J. A.; Diao, J. F.; Li, J. S.; Henkelman, G.; Cai, D. P.; Biendicho, J. J. et al. Robust lithium–sulfur batteries enabled by highly conductive WSe2-based superlattices with tunable interlayer space. Adv. Funct. Mater. 2022, 32, 2201322.

[27]

Guo, T. Q.; Song, Y. Z.; Sun, Z. T.; Wu, Y. H.; Xia, Y.; Li, Y. Y.; Sun, J. H.; Jiang, K.; Dou, S. X.; Sun, J. Y. Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithium–sulfur batteries. J. Energy Chem. 2020, 42, 34–42.

[28]

Lin, H. B.; Zhang, S. L.; Zhang, T. R.; Ye, H. L.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium–sulfur batteries. Adv. Energy Mater. 2018, 8, 1801868.

[29]

Zou, K. Y.; Chen, X. X.; Jing, W. T.; Dai, X.; Wang, P. F.; Liu, Y.; Qiao, R.; Shi, M.; Chen, Y. Z.; Sun, J. J. et al. Facilitating catalytic activity of indium oxide in lithium–sulfur batteries by controlling oxygen vacancies. Energy Storage Mater. 2022, 48, 133–144.

[30]

Luo, D.; Zhang, Z.; Li, G. R.; Cheng, S. B.; Li, S.; Li, J. D.; Gao, R.; Li, M.; Sy, S.; Deng, Y. P. et al. Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5− x nanocluster toward superior Li–S performance. ACS Nano 2020, 14, 4849–4860.

[31]

Wang, W.; Huai, L. Y.; Wu, S. Y.; Shan, J. W.; Zhu, J. L.; Liu, Z. G.; Yue, L. G.; Li, Y. Y. Ultrahigh-volumetric-energy-density lithium–sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2T x MXene bifunctional catalyst. ACS Nano 2021, 15, 11619–11633.

[32]

Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

[33]

Zhang, L. L.; Chen, X.; Wan, F.; Niu, Z. Q.; Wang, Y. J.; Zhang, Q.; Chen, J. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium–sulfur batteries. ACS Nano 2018, 12, 9578–9586.

[34]

Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides. ACS Energy Lett. 2017, 2, 795–801.

[35]

Qiu, C.; Qian, K.; Yu, J.; Sun, M. Z.; Cao, S. F.; Gao, J. Q.; Yu, R. X.; Fang, L. Z.; Yao, Y. W.; Lu, X. Q. et al. MOF-transformed In2O3− x @C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nanomicro Lett. 2022, 14, 167.

[36]

Kong, L.; Chen, X.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; Xie, J.; Zhang, Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium–sulfur batteries. Adv. Mater. 2018, 30, 1705219.

[37]

Wei, C. H.; Tian, M.; Wang, M. L.; Shi, Z. X.; Yu, L. H.; Li, S.; Fan, Z. D.; Yang, R. Z.; Sun, J. Y. Universal in situ crafted MO x –MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li–S batteries. ACS Nano 2020, 14, 16073–16084.

[38]

Li, N. R.; Yu, L. H.; Xi, J. Y. Integrated design of interlayer/current-collector: Heteronanowires decorated carbon microtube fabric for high-loading and lean-electrolyte lithium–sulfur batteries. Small 2021, 17, 2103001.

[39]

Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.

[40]

Schütt, K. T.; Sauceda, H. E.; Kindermans, P. J.; Tkatchenko, A.; Müller, K. R. SchNet—A deep learning architecture for molecules and materials. J. Chem. Phys. 2018, 148, 241722.

[41]

Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

[42]

Yuan, H.; Peng, H. J.; Li, B. Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J. Q.; Zhang, Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 2019, 9, 1802768.

[43]

Kong, L.; Li, B. Q.; Peng, H. J.; Zhang, R.; Xie, J.; Huang, J. Q.; Zhang, Q. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium–sulfur batteries. Adv. Energy Mater. 2018, 8, 1800849.

[44]

Zhang, G.; Zhang, Z. W.; Peng, H. J.; Huang, J. Q.; Zhang, Q. A toolbox for lithium–sulfur battery research: Methods and protocols. Small Methods 2017, 1, 1700134.

[45]

Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium–sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351–6358.

[46]

Qin, J. L.; Wang, R.; Pei, X.; Wang, D. L. Engineering cooperative catalysis in Li–S batteries. Adv. Energy Mater. 2023, 13, 2300611.

[47]

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

[48]

Han, P.; Chung, S. H.; Manthiram, A. Pyrrolic-type nitrogen-doped hierarchical macro/mesoporous carbon as a bifunctional host for high-performance thick cathodes for lithium–sulfur batteries. Small 2019, 15, 1900690.

[49]

Yang, Y. C.; Chen, C.; Hu, J. H.; Deng, Y. H.; Zhang, Y.; Yang, D. High performance lithium–sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer. Chin. Chem. Lett. 2018, 29, 1777–1780.

File
12274_2024_6442_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 September 2023
Revised: 15 December 2023
Accepted: 22 December 2023
Published: 25 January 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22279036) and the Innovation and Talent Recruitment Base of New Energy Chemistry and Device (No. B21003). The authors thank the Analytical and Testing Center of Huazhong University of Science and Technology (HUST) for allowing use of its facilities.

Return