Journal Home > Online First

Aqueous rechargeable batteries (ARBs) are generally safer than non-aqueous analogues, they are also less-expensive, and more friendly to the environment. However, the inherent disadvantage of the narrow electrochemical window of H2O seriously restricts the energy density and output voltage of ARBs, especially aqueous rechargeable Fe-based batteries. Herein, we introduce a new battery system: the anode contains C@Fe/Fe2O3 composite, which is interfaced with an alkaline electrolyte; the cathode contains LiMn2O4 in contact with a neutral electrolyte. A Li+-conducting membrane is carefully selected to decouple the electrode–electrolyte, which effectively widens the electrochemical window to above 2.65 V, thereby enables an aqueous rechargeable iron battery. Its average output voltage is 1.83 V and its energy density is 235.3 Wh/kg at 549 W/kg. In this work, we propose the energy storage mechanism with the aid of density functional theory (DFT). The calculated reduction potential of the anode agrees with the experimental value. Furthermore, this battery system demonstrates long cycle lifespan of approximately 2500 cycles at 2 A/g, corresponding to a capacity retention of 82.1%. These results are very far superior than those of mainstream aqueous rechargeable Fe-based batteries, which guarantee future investigation for storing electricity energy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An aqueous rechargeable Fe//LiMn2O4 hybrid battery with superior electrochemical performance beyond mainstream Fe-based batteries

Show Author's information Yu Liu1Dehui Xie1Yuxin Shi2Rongguan Lv1Yingna Chang1Yuzhen Sun1Zhiyuan Zhao1Jindi Wang1Kefan Song1Huayu Wu1Tuan K.A. Hoang3( )Rong Xing1( )Huan Pang2( )
Institute of New Energy on Chemical Storage and Power Sources, School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224000, China
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

Abstract

Aqueous rechargeable batteries (ARBs) are generally safer than non-aqueous analogues, they are also less-expensive, and more friendly to the environment. However, the inherent disadvantage of the narrow electrochemical window of H2O seriously restricts the energy density and output voltage of ARBs, especially aqueous rechargeable Fe-based batteries. Herein, we introduce a new battery system: the anode contains C@Fe/Fe2O3 composite, which is interfaced with an alkaline electrolyte; the cathode contains LiMn2O4 in contact with a neutral electrolyte. A Li+-conducting membrane is carefully selected to decouple the electrode–electrolyte, which effectively widens the electrochemical window to above 2.65 V, thereby enables an aqueous rechargeable iron battery. Its average output voltage is 1.83 V and its energy density is 235.3 Wh/kg at 549 W/kg. In this work, we propose the energy storage mechanism with the aid of density functional theory (DFT). The calculated reduction potential of the anode agrees with the experimental value. Furthermore, this battery system demonstrates long cycle lifespan of approximately 2500 cycles at 2 A/g, corresponding to a capacity retention of 82.1%. These results are very far superior than those of mainstream aqueous rechargeable Fe-based batteries, which guarantee future investigation for storing electricity energy.

Keywords: theoretical calculation, iron oxide, aqueous battery, high voltage, high energy

References(74)

[1]

Schröter, E.; Hager, M. D.; Schubert, U. S. Return of the iron age. Joule 2019, 3, 11–13.

[2]

Ma, L. B.; Zhu, G. Y.; Wang, D. D.; Chen, H. X.; Lv, Y. H.; Zhang, Y. Z.; He, X. J.; Pang, H. Emerging metal single atoms in electrocatalysts and batteries. Adv. Funct. Mater. 2020, 30, 2003870.

[3]

Zhou, W. X.; Tang, Y. J.; Zhang, X. Y.; Zhang, S. T.; Xue, H. G.; Pang, H. MOF derived metal oxide composites and their applications in energy storage. Coord. Chem. Rev. 2023, 477, 214949.

[4]

Du, G. Y.; Pang, H. Recent advancements in Prussian blue analogues: Preparation and application in batteries. Energy Storage Mater. 2021, 36, 387–408.

[5]

Liu, Y.; Zhi, J.; Hoang, T. K. A.; Zhou, M.; Han, M.; Wu, Y.; Shi, Q. Y.; Xing, R.; Chen, P. Paraffin based cathode–electrolyte interface for highly reversible aqueous zinc-ion battery. ACS Appl. Energy Mater. 2022, 5, 4840–4849.

[6]

Yu, F.; Wang, Y.; Liu, Y.; Hui, H. Y.; Wang, F. X.; Li, J. F.; Wang, Q. An aqueous rechargeable zinc-ion battery on basis of an organic pigment. Rare Met. 2022, 41, 2230–2236.

[7]

Liu, Y.; Zhi, J.; Sedighi, M.; Han, M.; Shi, Q. Y.; Wu, Y.; Chen, P. Mn2+ ions confined by electrode microskin for aqueous battery beyond intercalation capacity. Adv. Energy Mater. 2020, 10, 2002578.

[8]

Du, H. H.; Wang, K.; Sun, T. J.; Shi, J. Q.; Zhou, X. Z.; Cai, W. S.; Tao, Z. L. Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chem. Eng. J. 2022, 427, 131705.

[9]

Hu, Q.; Hou, J. M.; Liu, Y. B.; Li, L.; Ran, Q. Q.; Mao, J. Q.; Liu, X. Q.; Zhao, J. X.; Pang, H. Modulating zinc metal reversibility by confined antifluctuator film for durable and dendrite-free zinc ion batteries. Adv. Mater. 2023, 35, 2303336.

[10]

Liu, Y.; Shi, Q. Y.; Wu, Y.; Wang, Q.; Huang, J.; Chen, P. Highly efficient dendrite suppressor and corrosion inhibitor based on gelatin/Mn2+ co-additives for aqueous rechargeable zinc-manganese dioxide battery. Chem. Eng. J. 2021, 407, 127189.

[11]

Wang, Q.; Liu, Y.; Chen, P. Phenazine-based organic cathode for aqueous zinc secondary batteries. J. Power Sources 2020, 468, 228401.

[12]

He, Z.; Xiong, F.; Tan, S.; Yao, X.; Zhang, C.; An, Q. Iron metal anode for aqueous rechargeable batteries. Mater. Today Adv. 2021, 11, 100156.

[13]

Figueredo-Rodríguez, H. A.; McKerracher, R. D.; Insausti, M.; Garcia Luis, A.; Ponce de Leόn, C.; Alegre, C.; Baglio, V.; Aricò, A. S.; Walsh, F. C. A rechargeable, aqueous iron air battery with nanostructured electrodes capable of high energy density operation. J. Electrochem. Soc. 2017, 164, A1148.

[14]

Qiu, R.; Zheng, J. Y.; Cha, H. G.; Jung, M. H.; Lee, K. J.; Kang, Y. S. One-dimensional ferromagnetic dendritic iron wire array growth by facile electrochemical deposition. Nanoscale 2012, 4, 1565–1567.

[15]

Fang, Y. J.; Chen, Z. X.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries. Small 2018, 14, 1703116.

[16]

Wu, X. Y.; Markir, A.; Xu, Y. K.; Zhang, C.; Leonard, D. P.; Shin, W.; Ji, X. L. A rechargeable battery with an iron metal anode. Adv. Funct. Mater. 2019, 29, 1900911.

[17]

Wang, H. L.; Liang, Y. Y.; Gong, M.; Li, Y. G.; Chang, W.; Mefford, T.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F. et al. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 2012, 3, 917.

[18]

Lv, S.; Zhao, D. F.; Li, Y. Y.; Liu, J. P. Homogenous mixed coating enabled significant stability and capacity enhancement of iron oxide anodes for aqueous nickel-iron batteries. Chem. Commun. 2019, 55, 10308–10311.

[19]

Yan, J. P.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Du, W. C.; Li, C. C. High-voltage zinc-ion batteries: Design strategies and challenges. Adv. Funct. Mater. 2021, 31, 2010213.

[20]

Liu, Z. X.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180–232.

[21]

Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

[22]

Ruan, P. C.; Liang, S. Q.; Lu, B. G.; Fan, H. J.; Zhou, J. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem., Int. Ed. 2022, 61, e202200598.

[23]

Smith, L.; Dunn, B. Opening the window for aqueous electrolytes. Science 2015, 350, 918.

[24]

Leonard, D. P.; Wei, Z. X.; Chen, G.; Du, F.; Ji, X. L. Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 2018, 3, 373–374.

[25]

Chen, S. G.; Lan, R.; Humphreys, J.; Tao, S. W. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 2020, 28, 205–215.

[26]

Wang, X. J.; Hou, Y. Y.; Zhu, Y. S.; Wu, Y. P.; Holze, R. An aqueous rechargeable lithium battery using coated Li metal as anode. Sci. Rep. 2013, 3, 1401.

[27]

Zhang, M.; Huang, Z.; Shen, Z. R.; Gong, Y. P.; Chi, B.; Pu, J.; Li, J. High-performance aqueous rechargeable Li-Ni battery based on Ni(OH)2/NiOOH redox couple with high voltage. Adv. Energy Mater. 2017, 7, 1700155.

[28]

Li, H. Q.; Wang, Y. G.; Na, H.; Liu, H. M.; Zhou, H. S. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J. Am. Chem. Soc. 2009, 131, 15098–15099.

[29]

Chang, Z.; Li, C. Y.; Wang, Y. F.; Chen, B. W.; Fu, L. J.; Zhu, Y. S.; Zhang, L. X.; Wu, Y. P.; Huang, W. A lithium ion battery using an aqueous electrolyte solution. Sci. Rep. 2016, 6, 28421.

[30]

Wang, F.; Borodin, O.; Ding, M. S.; Gobet, M.; Vatamanu, J.; Fan, X. L.; Gao, T.; Eidson, N.; Liang, Y. J.; Sun, W. et al. Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2018, 2, 927–937.

[31]

Yang, C. Y.; Chen, J.; Qing, T.; Fan, X. L.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A. et al. 4.0 V aqueous Li-ion batteries. Joule 2017, 1, 122–132

[32]

Yang, C. Y.; Chen, J.; Ji, X.; Pollard, T. P.; Lü, X. J.; Sun, C. J.; Hou, S.; Liu, Q.; Liu, C. M.; Qing, T. et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 2019, 569, 245–250.

[33]

Chen, L.; Guo, Z. Y.; Xia, Y. Y.; Wang, Y. G. High-voltage aqueous battery approaching 3 V using an acidic-alkaline double electrolyte. Chem. Commun. 2013, 49, 2204–2206.

[34]

Gu, S.; Gong, K.; Yan, E. Z.; Yan, Y. S. A multiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. 2014, 7, 2986–2998.

[35]

Wu, X.; Wu, H. B.; Xiong, W.; Le, Z. Y.; Sun, F.; Liu, F.; Chen, J. S.; Zhu, Z. H.; Lu, Y. F. Robust iron nanoparticles with graphitic shells for high-performance Ni-Fe battery. Nano Energy 2016, 30, 217–224.

[36]

Yuan, J. S.; Yin, H. B.; Ji, Z. Y.; Deng, H. N. Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate. Ind. Eng. Chem. Res. 2014, 53, 9889–9896.

[37]

Li, C. Y.; Wu, W. Z.; Wang, P.; Zhou, W. B.; Wang, J.; Chen, Y. H.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Huang, W. Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2 V by using an alkaline-acidic electrolyte. Adv. Sci. 2019, 6, 1801665.

[38]

Yuan, X. H.; Wu, X. W.; Zeng, X. X.; Wang, F. X.; Wang, J.; Zhu, Y. S.; Fu, L. J.; Wu, Y. P.; Duan, X. F. A fully aqueous hybrid electrolyte rechargeable battery with high voltage and high energy density. Adv. Energy Mater. 2020, 10, 2001583.

[39]

Wang, Q.; Liu, Y.; Wang, C.; Xu, X. Y.; Zhao, W.; Li, Y. Y.; Dong, H. L. Vat orange 7 as an organic electrode with ultrafast hydronium-ion storage and super-long life for rechargeable aqueous zinc batteries. Chem. Eng. J. 2023, 451, 138776.

[40]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[41]

Hellweg, A.; Eckert, F. Brick by brick computation of the Gibbs free energy of reaction in solution using quantum chemistry and COSMO-RS. AIChE J. 2017, 63, 3944–3954.

[42]

Tsushima, S.; Yang, T. X.; Suzuki, A. Theoretical Gibbs free energy study on UO2(H2O) n 2+ and its hydrolysis products. Chem. Phys. Lett. 2001, 334, 365–373.

[43]

Yang, J.; Chen, J. W.; Wang, Z. X.; Wang, Z.; Zhang, Q. C.; He, B.; Zhang, T.; Gong, W. B.; Chen, M. X.; Qi, M. et al. High-capacity iron-based anodes for aqueous secondary nickel-iron batteries: Recent progress and prospects. ChemElectroChem 2021, 8, 274–290.

[44]

Gong, K.; Xu, F.; Grunewald, J. B.; Ma, X. Y.; Zhao, Y.; Gu, S.; Yan, Y. S. All-soluble all-iron aqueous redox-flow battery. ACS Energy Lett. 2016, 1, 89–93.

[45]

Liu, Y.; Wiek, A.; Dzhagan, V.; Holze, R. Improved electrochemical behavior of amorphous carbon-coated copper/CNT composites as negative electrode material and their energy storage mechanism. J. Electrochem. Soc. 2016, 163, A1247–A1253.

[46]

Liu, Y.; Xu, Y.; Chang, Y. N.; Sun, Y. Z.; Zhao, Z. Y.; Song, K. F.; Wang, J. D.; Yu, F.; Xing, R. A new high-current electrochemical capacitor using MnO2-coated vapor-grown carbon fibers. Crystals 2022, 12, 1444.

[47]

Rodulfo-Baechler, S. M.; González-Cortés, S. L.; Orozco, J.; Sagredo, V.; Fontal, B.; Mora, A. J.; Delgado, G. Characterization of modified iron catalysts by X-ray diffraction, infrared spectroscopy, magnetic susceptibility and thermogravimetric analysis. Mater. Lett. 2004, 58, 2447.

[48]

Mohamed, H. O.; Obaid, M.; Poo, K.-M.; Abdelkareem, M. A.; Talas, S. A.; Fadali, O. A.; Kim, H. Y.; Chae, K.-J. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chem. Eng. J. 2018, 349, 800.

[49]

Sun, Y. Z.; Liu, Y.; Han, Y. T.; Li, Z. Y.; Ning, G. Q.; Xing, R.; Ma, X. L. Effects of thermal transformation on graphene-like lamellar porous carbon and surface-contributed capacitance. Mater. Today Commun. 2021, 29, 102982.

[50]

Liu, Y.; Liu, Y. X.; Lv, R. G.; Han, M.; Chang, Y. N.; Zhao, Z. Y.; Sun, Y. Z.; Hoang, T. K. A.; Xing, R. Effects of various valence ions on an aqueous rechargeable Zn//polyaniline-coated ZnMn2O4 battery. ChemPlusChem 2023, 88, e202300044.

[51]

Saoud, F. S.; Plenet, J. C.; Henini, M. Band gap and partial density of states for ZnO: Under high pressure. J. Alloys Compd. 2015, 619, 812–819.

[52]

Yu, X. W.; Manthiram, A. A voltage-enhanced, low-cost aqueous iron-air battery enabled with a mediator-ion solid electrolyte. ACS Energy Lett. 2017, 2, 1050.

[53]

Zhi, J.; Yang, C. Y.; Lin, T. Q.; Cui, H. L.; Wang, Z.; Zhang, H.; Huang, F. Q. Flexible all solid state supercapacitor with high energy density employing black titania nanoparticles as conductive agent. Nanoscale 2016, 8, 4054.

[54]

Zhi, J.; Li, S. K.; Han, M.; Lou, Y. X.; Chen, P. Unveiling conversion reaction on intercalation-based transition metal oxides for high power, high energy aqueous lithium battery. Adv. Energy Mater. 2018, 8, 1802254.

[55]

Kim, H.; Park, J.; Lee, Y. S. A protocol to evaluate one electron redox potential for iron complexes. J. Comput. Chem. 2013, 34, 2233–2241.

[56]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[57]

Nguyen, M. T.; Seriani, N.; Piccinin, S.; Gebauer, R. Photo-driven oxidation of water on α-Fe2O3 surfaces: An ab initio study. J. Chem. Phys. 2014, 140, 064703.

[58]

Liu, Y.; Wen, Z. B.; Wu, X. W.; Wang, X. W.; Wu, Y. P.; Holze, R. An acid-free rechargeable battery based on PbSO4 and spinel LiMn2O4. Chem. Commun. 2014, 50, 13714–13717.

[59]

Zhu, Z.; Meng, Y.; Wang, M.; Yin, Y.; Chen, W. A high-performance aqueous iron-hydrogen gas battery. Mater. Today Energy 2021, 19, 100603.

[60]

Zhang, Y. L.; Henkensmeier, D.; Kim, S.; Hempelmann, R.; Chen, R. Y. Enhanced reaction kinetics of an aqueous Zn-Fe hybrid flow battery by optimizing the supporting electrolytes. J. Energy Storage 2019, 25, 100883.

[61]

Peng, Z.; Wei, Q. L.; Tan, S. S.; He, P.; Luo, W.; An, Q. Y.; Mai, L. Q. Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun. 2018, 54, 4041–4044.

[62]

Xu, Y. K.; Wu, X. Y.; Sandstrom, S. K.; Hong, J. J.; Jiang, H.; Chen, X.; Ji, X. L. Fe-ion bolted VOPO4∙2H2O as an aqueous Fe-ion battery electrode. Adv. Mater. 2021, 33, 2105234.

[63]

Wu, W. L.; Yang, X. P.; Wang, K.; Li, C. C.; Zhang, X.; Shi, H. Y.; Liu, X. X.; Sun, X. Q. Regulating the electro-deposition behavior of Fe metal anode and the applications in rechargeable aqueous iron-iodine batteries. Chem. Eng. J. 2022, 432, 134389.

[64]

Bai, C.; Jin, H. J.; Gong, Z. S.; Liu, X. Z.; Yuan, Z. H. A high-power aqueous rechargeable Fe-I2 battery. Energy Storage Mater. 2020, 28, 247–254.

[65]

Shin, M.; Noh, C.; Kwon, Y. Stability enhancement for all-iron aqueous redox flow battery using iron-3-[bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid complex and ferrocyanide as redox couple. Int. J. Energy Res. 2022, 46, 6866–6875.

[66]

Ruan, W. Q.; Mao, J. T.; Yang, S. D.; Chen, Q. Communication-tris(bipyridyl)iron complexes for high-voltage aqueous redox flow batteries. J. Electrochem. Soc. 2020, 167, 100543.

[67]

Lei, D. N.; Lee, D. C.; Magasinski, A.; Zhao, E. B.; Steingart, D.; Yushin, G. Performance enhancement and side reactions in rechargeable nickel-iron batteries with nanostructured electrodes. ACS Appl. Mater. Interfaces 2016, 8, 2088–2096.

[68]

Guo, C. X.; Li, C. M. Molecule-confined FeO x nanocrystals mounted on carbon as stable anode material for high energy density nickel-iron batteries. Nano Energy 2017, 42, 166–172.

[69]

Lai, C. W.; Cheng, L. L.; Sun, Y.; Lee, K.; Lin, B. P. Alkaline aqueous rechargeable Ni-Fe batteries with high-performance based on flower-like hierarchical NiCo2O4 microspheres and vines-grapes-like Fe3O4-NGC composites. Appl. Surf. Sci. 2021, 563, 150411.

[70]

Tan, W. K.; Asami, K.; Maeda, Y.; Hayashi, K.; Kawamura, G.; Muto, H.; Matsuda, A. Facile formation of Fe3O4-particles decorated carbon paper and its application for all-solid-state rechargeable Fe-air battery. Appl. Surf. Sci. 2019, 486, 257–264.

[71]

Wei, L.; Wu, M. C.; Zhao, T. S.; Zeng, Y. K.; Ren, Y. X. An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage. Appl. Energy 2018, 215, 98–105.

[72]

Luo, H.; Wang, B.; Li, Y. H.; Liu, T. F.; You, W. L.; Wang, D. L. Core–shell structured Fe3O4@NiS nanocomposite as high-performance anode material for alkaline nickel-iron rechargeable batteries. Electrochim. Acta 2017, 231, 479–486.

[73]

Li, F. F.; Pan, Y. F.; Wang, H. Y.; Huang, X. B.; Zhang, Q.; Peng, Z. G.; Tang, Y. G. Core–bishell Fe-Ni@Fe3O4@C nanoparticles as an advanced anode for rechargeable nickel-iron battery. J. Electrochem. Soc. 2017, 164, A1333–A1338.

[74]

Yin, F. Q.; Yang, P. P.; Chen, X. Y.; Yang, Q.; Xie, J. L. Chemically coupled Fe2O3/graphene hydrogel as binder-free anode material for stable Ni-Fe battery with high energy and power density. Batter. Supercaps 2022, 5, e202100289.

File
6440_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 August 2023
Revised: 18 October 2023
Accepted: 22 December 2023
Published: 25 January 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This research was funded by Jiangsu Natural Science Foundation Youth Fund Project (No. BK20220700), Jiangsu Province Industry University Research Cooperation Project (No. BY20221063), Project of Natural Science Research in Colleges and Universities of Jiangsu Province (Nos. 21KJD150004 and 23KJB480010), Jiangsu Province Education Department Major Project (Nos. 19KJA140003 and 21KJA530004), and Key R&D Plan (Social Development) Project of Yancheng Science and Technology Bureau (No. YCBE202243).

Return