Journal Home > Volume 17 , Issue 6

Cuprotosis, a new type of cell death, provides great opportunities for the treatment of oral squamous cell carcinoma, as nanocarriers of copper ions can induce cuprotosis and immunogenic death. Here, we studied an editor that enables production of a nanoparticle “storm” in oral squamous cell carcinoma, maximizing the toxic effect of these particles and reprogramming the tumor microenvironment; as a result, T cells and natural killer (NK) cells can infiltrate the tumor microenvironment to activate an antitumor immune response. On this basis, the editor can be combined with optical therapy to improve patient prognosis. In this study, the metal ratio was regulated in response to the nanocarrier of acid response type. Thus, in the presence of a specific copper ion content, the nanocarrier could change the permeability of the tumor cell membrane. Based on these results, the nanoparticles were cracked in an acidic environment and then released copper ions. Finally, the nanoparticles contributed to cuprotosis and immunogenic death. In addition, the editor could inhibit murine oral cancer 1 (MOC1) tumors in C57BL/6 without toxicity. The rate of tumor growth inhibition was as high as approximately 80%. This strategy provides a new idea for immunotherapy. Moreover, it can improve the interaction between immunotherapy and the copper-induced death of oral squamous cell carcinoma. Above all, this study will provide a new opportunity for the effective treatment of oral squamous cell carcinoma.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A stepwise-responsive editor integrated with three copper ions for the treatment of oral squamous cell carcinoma

Show Author's information Jinna Ren1,2,§Jingying Hu2,4,§Fan Dong3,§Yan Xu5Yang Peng3Yuping Qian3Guanmeng Zhang3Min Wang1( )Yuguang Wang2,3( )
Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
Department of Nursing, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China

§ Jinna Ren, Jingying Hu, and Fan Dong contributed equally to this work.

Abstract

Cuprotosis, a new type of cell death, provides great opportunities for the treatment of oral squamous cell carcinoma, as nanocarriers of copper ions can induce cuprotosis and immunogenic death. Here, we studied an editor that enables production of a nanoparticle “storm” in oral squamous cell carcinoma, maximizing the toxic effect of these particles and reprogramming the tumor microenvironment; as a result, T cells and natural killer (NK) cells can infiltrate the tumor microenvironment to activate an antitumor immune response. On this basis, the editor can be combined with optical therapy to improve patient prognosis. In this study, the metal ratio was regulated in response to the nanocarrier of acid response type. Thus, in the presence of a specific copper ion content, the nanocarrier could change the permeability of the tumor cell membrane. Based on these results, the nanoparticles were cracked in an acidic environment and then released copper ions. Finally, the nanoparticles contributed to cuprotosis and immunogenic death. In addition, the editor could inhibit murine oral cancer 1 (MOC1) tumors in C57BL/6 without toxicity. The rate of tumor growth inhibition was as high as approximately 80%. This strategy provides a new idea for immunotherapy. Moreover, it can improve the interaction between immunotherapy and the copper-induced death of oral squamous cell carcinoma. Above all, this study will provide a new opportunity for the effective treatment of oral squamous cell carcinoma.

Keywords: immunotherapy, photothermal therapy, tumor microenvironment, cuprotosis, immunogenic death

References(38)

[1]

Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424.

[2]

Leemans, C. R.; Braakhuis, B. J. M.; Brakenhoff, R. H. The molecular biology of head and neck cancer. Nat. Rev. Cancer 2011, 11, 9–22.

[3]

Krishna, S.; Ulrich, P.; Wilson, E.; Parikh, F.; Narang, P.; Yang, S. S.; Read, A. K.; Kim-Schulze, S.; Park, J. G.; Posner, M. et al. Human papilloma virus specific immunogenicity and dysfunction of CD8+ T cells in head and neck cancer. Cancer Res. 2018, 78, 6159–6170.

[4]

Badoual, C.; Hans, S.; Merillon, N.; Van Ryswick, C.; Ravel, P.; Benhamouda, N.; Levionnois, E.; Nizard, M.; Si-Mohamed, A.; Besnier, N. et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013, 73, 128–138.

[5]

Mandal, R.; Şenbabaoğlu, Y.; Desrichard, A.; Havel, J. J.; Dalin, M. G.; Riaz, N.; Lee, K. W.; Ganly, I.; Hakimi, A. A.; Chan, T. A. et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 2016, 1, e89829.

[6]

Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R. D. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261.

[7]

Tsvetkov, P.; Detappe, A.; Cai, K.; Keys, H. R.; Brune, Z.; Ying, W. W.; Thiru, P.; Reidy, M.; Kugener, G.; Rossen, J. et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol. 2019, 15, 681–689.

[8]

Kahlson, M. A.; Dixon, S. J. Copper-induced cell death. Science 2022, 375, 1231–1232.

[9]

Wang, Y. Q.; Zhang, L.; Zhou, F. F. Cuproptosis: A new form of programmed cell death. Cell. Mol. Immunol. 2022, 19, 867–868.

[10]

Huo, S. Q.; Wang, Q.; Shi, W.; Peng, L. L.; Jiang, Y.; Zhu, M. Y.; Guo, J. Y.; Peng, D. W.; Wang, M. R.; Men, L. T. et al. ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury. Int. J. Mol. Sci. 2023, 24, 1667.

[11]

Tang, Y. Q.; Bisoyi, H. K.; Chen, X. M.; Liu, Z. Y.; Chen, X.; Zhang, S.; Li, Q. Pyroptosis-mediated synergistic photodynamic and photothermal immunotherapy enabled by a tumor-membrane-targeted photosensitive dimer. Adv. Mater. 2023, 35, 2300232.

[12]

Jin, X. K.; Liang, J. L.; Zhang, S. M.; Huang, Q. X.; Zhang, S. K.; Liu, C. J.; Zhang, X. Z. Orchestrated copper-based nanoreactor for remodeling tumor microenvironment to amplify cuproptosis-mediated anti-tumor immunity in colorectal cancer. Mater. Today 2023, 68, 108–124.

[13]

Huang, Q. X.; Liang, J. L.; Chen, Q. W.; Jin, X. K.; Niu, M. T.; Dong, C. Y.; Zhang, X. Z. Metal-organic framework nanoagent induces cuproptosis for effective immunotherapy of malignant glioblastoma. Nano Today 2023, 51, 101911.

[14]

Zhang, G. Z.; Zhan, M. S.; Zhang, C. C.; Wang, Z. Q.; Sun, H. X.; Tao, Y. C.; Shi, Q. S.; He, M. J.; Wang, H.; Rodrigues, J. et al. Redox-responsive dendrimer nanogels enable ultrasound-enhanced chemoimmunotherapy of pancreatic cancer via endoplasmic reticulum stress amplification and macrophage polarization. Adv. Sci. 2023, 10, 2301759.

[15]

Li, Z.; Xiao, C.; Yong, T. Y.; Li, Z. F.; Gan, L.; Yang, X. L. Influence of nanomedicine mechanical properties on tumor targeting delivery. Chem. Soc. Rev. 2020, 49, 2273–2290.

[16]

Yang, Q. Y.; Liu, J. W.; Cai, W. T.; Liang, X.; Zhuang, Z. C.; Liao, T.; Zhang, F. X.; Hu, W. K.; Liu, P. X.; Fan, S. J. et al. Non-heme iron single-atom nanozymes as peroxidase mimics for tumor catalytic therapy. Nano Lett. 2023, 23, 8585–8592.

[17]

Guo, B. D.; Yang, F. Y.; Zhang, L. P.; Zhao, Q. X.; Wang, W. K.; Yin, L.; Chen, D.; Wang, M. S.; Han, S. J.; Xiao, H. H. et al. Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv. Mater. 2023, 35, 2212267.

[18]

Xu, Y. Z.; Liu, S. Y.; Zeng, L. L.; Ma, H. S.; Zhang, Y. F.; Yang, H. H.; Liu, Y. C.; Fang, S.; Zhao, J.; Xu, Y. S. et al. An enzyme-engineered nonporous copper(I) coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy. Adv. Mater. 2023, 35, 2300773.

[19]

Duan, W. X.; Hang, L. F.; Ma, Y. C.; Wang, Q.; Tang, X. F.; Jiang, W.; Wu, Y.; Lv, W. F.; Wang, Y. C. Compartmentalized nano-MOFs as co-delivery systems for enhanced antitumor therapy. ACS Appl. Mater. Interfaces 2023, 15, 39039–39052.

[20]

Gong, J. L.; Ye, C. X. Y.; Ran, J. H.; Xiong, X.; Fang, X. Y.; Zhou, X. M.; Yi, Y. T.; Lu, X.; Wang, J.; Xie, C. M. et al. Polydopamine-mediated immunomodulatory patch for diabetic periodontal tissue regeneration assisted by metformin-ZIF system. ACS Nano 2023, 17, 16573–16586.

[21]

Huang, Y.; Qin, G.; Cui, T. T.; Zhao, C. Q.; Ren, J. S.; Qu, X. G. A bimetallic nanoplatform for STING activation and CRISPR/Cas mediated depletion of the methionine transporter in cancer cells restores anti-tumor immune responses. Nat. Commun. 2023, 14, 4647.

[22]

Jin, Y. Y.; Guo, Y. S.; Yang, J. H.; Chu, X. Y.; Huang, X. M.; Wang, Q. Y.; Zeng, Y. L.; Su, L. L.; Lu, S.; Wang, C. Y. et al. A novel “inside-out” intraocular nanomedicine delivery mode for nanomaterials’ biological effect enhanced choroidal neovascularization occlusion and microenvironment regulation. Adv. Mater. 2023, 35, 2209690.

[23]

Ma, L. M.; Zhou, J. L.; Wu, Q.; Luo, G. W.; Zhao, M. Z.; Zhong, G. Q.; Zheng, Y. F.; Meng, X. W.; Cheng, S.; Zhang, Y. Multifunctional 3D-printed scaffolds eradiate orthotopic osteosarcoma and promote osteogenesis via microwave thermo-chemotherapy combined with immunotherapy. Biomaterials 2023, 301, 122236.

[24]

Siboro, P. Y.; Nguyen, V. K. T.; Miao, Y. B.; Sharma, A. K.; Mi, F. L.; Chen, H. L.; Chen, K. H.; Yu, Y. T.; Chang, Y.; Sung, H. W. Ultrasound-activated, tumor-specific in situ synthesis of a chemotherapeutic agent using ZIF-8 nanoreactors for precision cancer therapy. ACS Nano 2022, 16, 12403–12414.

[25]

Song, Y. Z.; Han, S.; Liu, S. W.; Sun, R. N.; Zhao, L.; Yan, C. Biodegradable imprinted polymer based on ZIF-8/DOX-HA for synergistically targeting prostate cancer cells and controlled drug release with multiple responses. ACS Appl. Mater. Interfaces 2023, 15, 25339–25353.

[26]

Zhao, H. X.; Li, T. T.; Yao, C.; Gu, Z.; Liu, C. X.; Li, J. H.; Yang, D. Y. Dual roles of metal-organic frameworks as nanocarriers for miRNA delivery and adjuvants for chemodynamic therapy. ACS Appl. Mater. Interfaces 2021, 13, 6034–6042.

[27]

Chen, K. R.; Zhou, A. W.; Zhou, X. Y.; Liu, Y. H.; Xu, Y. R.; Ning, X. H. An intelligent cell-derived nanorobot bridges synergistic crosstalk between sonodynamic therapy and cuproptosis to promote cancer treatment. Nano Lett. 2023, 23, 3038–3047.

[28]

Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

[29]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[30]

Zhao, G.; Sun, H. J.; Zhang, T.; Liu, J. X. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun. Signal. 2020, 18, 45.

[31]

Ou, H. H.; Qian, Y. P.; Yuan, L. T.; Li, H.; Zhang, L. D.; Chen, S. H.; Zhou, M.; Yang, G. D.; Wang, D. S.; Wang, Y. G. Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 2023, 35, 2305077.

[32]

Zhan, M. S.; Qiu, J. R.; Fan, Y.; Chen, L.; Guo, Y. Q.; Wang, Z. Q.; Li, J.; Majoral, J. P.; Shi, X. Y. Phosphorous dendron micelles as a nanomedicine platform for cooperative tumor chemoimmunotherapy via synergistic modulation of immune cells. Adv. Mater. 2023, 35, 2208277.

[33]

Xie, J. M.; Yang, Y. N.; Gao, Y. B.; He, J. Cuproptosis: Mechanisms and links with cancers. Mol. Cancer 2023, 22, 46.

[34]

Xue, T. Y.; Zhang, Z. R.; Fang, T. L.; Li, B. Q.; Li, Y.; Li, L. Y.; Jiang, Y. H.; Duan, F. F.; Meng, F. Q.; Liang, X. et al. Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer. Nano Res. 2022, 15, 5295–5304.

[35]

Wang, M. Y.; Wang, Y. F.; Mu, Y. T.; Yang, F. X.; Yang, Z. B.; Liu, Y. X.; Huang, L. L.; Liu, S.; Guan, X. G.; Xie, Z. G. et al. Engineering SIRPα cellular membrane-based nanovesicles for combination immunotherapy. Nano Res. 2023, 16, 7355–7363.

[36]

Xu, M. Z.; Zhang, C. Y.; Wu, J. G.; Zhou, H. G.; Bai, R.; Shen, Z. Y.; Deng, F. L.; Liu, Y.; Liu, J. PEG-detachable polymeric micelles self-assembled from amphiphilic copolymers for tumor-acidity-triggered drug delivery and controlled release. ACS Appl. Mater. Interfaces 2019, 11, 5701–5713.

[37]

Huang, X. X.; Liao, W. B.; Zhang, G.; Kang, S. M.; Zhang, C. Y. pH-sensitive micelles self-assembled from polymer brush (PAE- g-cholesterol)- b-PEG-(PAE- g-cholesterol) for anticancer drug delivery and controlled release. Int. J. Nanomed. 2017, 12, 2215–2226

[38]

Kim, J. Y.; Hong, D.; Lee, J. C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J. et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 2021, 12, 3765.

File
12274_2024_6438_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 November 2023
Revised: 20 December 2023
Accepted: 21 December 2023
Published: 25 January 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was funded by the National Key Research and Development Program of China (No. 2022YFC2403203-3), Jilin Province Department of Finance (No. jcsz2023481-13), the National Natural Science Foundation of China (Nos. 51972003 and 52271127), the Intergovernmental International Co-operation Project of Beijing Municipal Science and Technology Commission (No. Z221100002722004), and the 2023 Management Research Project (No. YS040223).

Return