Journal Home > Volume 17 , Issue 6

To elucidate the synergistic effect of dual-atom catalysts (DACs) at the microscopic level, we propose and construct a prototype heteronuclear system, CuNi/TiO2, in which the two elements of a pair have significantly different d electron-donating abilities, as a piece in the puzzle. Using density functional theory calculations, we investigate charge-dependent configurations of Cu-Ni dimers anchored on TiO2 by the mixing of individual constituent atoms. The d electron-donating ability determines deposition sequence and position of transition metal atoms on oxides, establishing dimer pattern and metal–support interactions. The interaction between Cu and Ni, beyond the coordination environment, predominately contributes to the synergistic effect. A complex adsorption–reduction behavior of H species on CuNi/TiO2 is observed. The reaction mechanism and catalytic activity of CuNi/TiO2 for hydrogen production are explored. At room temperature and high H coverages, CuNi/TiO2 shows better performance and efficiency than Ni1/TiO2. Our findings provide a new understanding of the synergistic effect on structure–activity relationships of supported dimers, which would be beneficial in the future design of various DACs or even atomically dispersed metal catalysts.


menu
Abstract
Full text
Outline
About this article

An interesting synergistic effect of heteronuclear dual-atom catalysts for hydrogen production: Offsetting or promoting

Show Author's information Zhonghao WangWei TangJialin LiuGang Zhou( )
School of Science, Hubei University of Technology, Wuhan 430068, China

Abstract

To elucidate the synergistic effect of dual-atom catalysts (DACs) at the microscopic level, we propose and construct a prototype heteronuclear system, CuNi/TiO2, in which the two elements of a pair have significantly different d electron-donating abilities, as a piece in the puzzle. Using density functional theory calculations, we investigate charge-dependent configurations of Cu-Ni dimers anchored on TiO2 by the mixing of individual constituent atoms. The d electron-donating ability determines deposition sequence and position of transition metal atoms on oxides, establishing dimer pattern and metal–support interactions. The interaction between Cu and Ni, beyond the coordination environment, predominately contributes to the synergistic effect. A complex adsorption–reduction behavior of H species on CuNi/TiO2 is observed. The reaction mechanism and catalytic activity of CuNi/TiO2 for hydrogen production are explored. At room temperature and high H coverages, CuNi/TiO2 shows better performance and efficiency than Ni1/TiO2. Our findings provide a new understanding of the synergistic effect on structure–activity relationships of supported dimers, which would be beneficial in the future design of various DACs or even atomically dispersed metal catalysts.

Keywords: density functional theory, synergistic effect, hydrogen production, dual-atom catalysts, heteronuclear/homonuclear dimers

References(66)

[1]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[2]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[3]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[4]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[5]

Hou, C. C.; Wang, H. F.; Lia, C. X.; Xu, Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693.

[6]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[7]

Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.

[8]

Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.

[9]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[10]

Zhu, P.; Xiong, X.; Wang, X. L.; Ye, C. L.; Li, J. Z.; Sun, W. M.; Sun, X. H.; Jiang, J. J.; Zhuang, Z. B.; Wang, D. S. et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 2022, 22, 9507–9515.

[11]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[12]

Zhang, X.; Zhang, M. T.; Deng, Y. C.; Xu, M. Q.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B. B.; Yao, S. Y.; Zhang, X. C. et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 2021, 589, 396–401.

[13]

Yan, H.; Lin, Y.; Wu, H.; Zhang, W. H.; Sun, Z. H.; Cheng, H.; Liu, W.; Wang, C. L.; Li, J. J.; Huang, X. H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017, 8, 1070.

[14]

Ye, W.; Chen, S. M.; Lin, Y.; Yang, L.; Chen, S. J.; Zheng, X. S.; Qi, Z. M.; Wang, C. M.; Long, R.; Chen, M. et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865–2878.

[15]

Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W.; He, H.; Zhou, K. B. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B 2020, 268, 118747.

[16]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[17]

Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

[18]

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

[19]

Li, Z.; Wu, R.; Zhao, L.; Li, P. B.; Wei, X. X.; Wang, J. J.; Chen, J. S.; Zhang, T. R. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Res. 2021, 14, 3795–3809.

[20]

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

[21]

Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

[22]

Liu, J. L.; Bi, H.; Zhang, L.; Zhou, G. Transition metal dual-atom Ni2/TiO2 catalysts for photoelectrocatalytic hydrogen evolution: A density functional theory study. Appl. Surf. Sci. 2023, 608, 155132.

[23]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[24]

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

[25]

Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936.

[26]

Da, Y. M.; Tian, Z. L.; Jiang, R.; Liu, Y.; Lian, X.; Xi, S. B.; Shi, Y.; Wang, Y. P.; Lu, H. T.; Cui, B. H. et al. Dual Pt-Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N4C2 configurations for synergistic electrocatalytic hydrogen evolution reaction. Sci. China Mater. 2023, 66, 1389–1397.

[27]

Yang, Y.; Qian, Y. M.; Li, H. J.; Zhang, Z. H.; Mu, Y. W.; Do, D.; Zhou, B.; Dong, J.; Yan, W. J.; Qin, Y. et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eaba6586.

[28]

Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energy Rev. 2007, 11, 401–425.

[29]

Wang, C.; Wang, K. W.; Feng, Y. B.; Li, C.; Zhou, X. Y.; Gan, L. Y.; Feng, Y. J.; Zhou, H. J.; Zhang, B.; Qu, X. L. et al. Co and Pt dual-single-atoms with oxygen-coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv. Mater. 2021, 33, 2003327.

[30]

Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

[31]

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

[32]

Yang K.; Zhou, G. Hydrogen evolution/spillover effect of single cobalt atom on anatase TiO2 from first-principles calculations. Appl. Surf. Sci. 2021, 536, 147831.

[33]

Xia, C. L.; Nguyen, T. H. C.; Nguyen, X. C.; Kim, S. Y.; Le Tri Nguyen, D.; Raizada, P.; Singh, P.; Nguyen, V. H.; Nguyen, C. C.; Hoang, V. C. et al. Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: Progress and perspectives. Fuel 2022, 307, 121745.

[34]

Wei, T. C.; Ding, P. J.; Wang, T.; Liu, L. M.; An, X. Q.; Yu, X. L. Facet-regulating local coordination of dual-atom cocatalyzed TiO2 for photocatalytic water splitting. ACS Catal. 2021, 11, 14669–14676.

[35]

Zhou, Y. X.; Qin, H.; Fang, S. H.; Wang, Y. Y.; Li, J.; Mele, G.; Wang, C. Photocatalytic hydrogen evolution over Pt-Pd dual atom sites anchored on TiO2 nanosheets. Catal. Sci. Technol. 2022, 12, 7151–7160.

[36]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[37]

Bi, H.; Zhang, L.; Wang, Z. Y.; Zhou, G. Identification of active sites available for hydrogen evolution of single-atom Ni1/TiO2 catalysts. Appl. Surf. Sci. 2022, 579, 152139.

[38]

Kumar, M. K.; Naresh, G.; Kumar, V. V.; Vasista, B. S.; Sasikumar, B.; Venugopal, A. Improved H2 yields over Cu-Ni-TiO2 under solar light irradiation: Behaviour of alloy nano particles on photocatalytic H2O splitting. Appl. Catal. B: Environ. 2021, 299, 120654.

[39]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[40]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[41]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[42]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[43]

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

[44]

Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J. Phys. Condens. Matter 1997, 9, 767–808.

[45]

Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44, 943–954.

[46]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[47]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[48]

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

[49]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[50]

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

[51]

Liu, J. L.; Wang, Z. H.; Chen, F. R.; Zhou, G. Self-assembly, structure and catalytic activity of Ni3 on TiO2: A triple-atom catalyst for hydrogen evolution. Appl. Surf. Sci. 2024, 643, 158719.

[52]

Jin, C.; Dai, Y.; Wei, W.; Ma, X. C.; Li, M. M.; Huang, B. B. Effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO2. Appl. Surf. Sci. 2017, 426, 639–646.

[53]

Zhang, L.; Bi, H.; Wang, Z. Y.; Zhou, G. Insight into enhanced hydrogen evolution of single-atom Cu1/TiO2 catalysts from first principles. Int. J. Hydrogen Energy 2022, 47, 4653–4661.

[54]

Ramos, K. B.; Saly, M. J.; Chabal, Y. J. Precursor design and reaction mechanisms for the atomic layer deposition of metal films. Coordin. Chem. Rev. 2013, 257, 3271–3281.

[55]

Lim, J. E.; Ahn, S. H.; Jang, J. H.; Park, H.; Kim, S. K. Electrodeposited NiCu alloy catalysts for glucose oxidation. Bull. Korean Chem. Soc. 2014, 35, 2019–2024.

[56]

Liu, H. L.; Huang, Z. W.; Kang, H. X.; Li, X. M.; Xia, C. G.; Chen, J.; Liu, H. C. Efficient bimetallic NiCu-SiO2 catalysts for selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol. Appl. Catal. B: Environ. 2018, 220, 251–263.

[57]

Jin, X.; Yin, B.; Xia, Q.; Fang, T. Q.; Shen, J.; Kuang, L. Q.; Yang, C. H. Catalytic transfer hydrogenation of biomass-derived substrates to value-added chemicals on dual-function catalysts: Opportunities and challenges. ChemSusChem 2019, 12, 71–92.

[58]

Luneau, M.; Lim, J. S.; Patel, D. A.; Sykes, E. C. H.; Friend, C. M.; Sautet, P. Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: A review. Chem. Rev. 2020, 120, 12834–12872.

[59]

George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131.

[60]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[61]

Zhang, L.; Zhou, G. Coordination engineering of single-atom copper embedded graphene-like borocarbonitrides for hydrogen production. Appl. Surf. Sci. 2023, 610, 155506.

[62]

Liu, H. J.; Zhao, L. M.; Liu, Y. H.; Xu, J.; Zhu, H. Y.; Guo, W. Y. Enhancing hydrogen evolution activity by doping and tuning the curvature of manganese-embedded carbon nanotubes. Catal. Sci. Technol. 2019, 9, 5301–5314.

[63]
Bockris, J. O.; Reddy, A. K. N. Modern Electrochemistry; Springer: Berlin, 1970.
[64]

Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 1972, 39, 163–184

[65]

Lee, C. H.; Jun, B.; Lee, S. U. Theoretical evaluation of the structure–activity relationship in graphene-based electrocatalysts for hydrogen evolution reactions. RSC Adv. 2017, 7, 27033–27039.

[66]

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 November 2023
Revised: 19 December 2023
Accepted: 21 December 2023
Published: 27 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52272199).

Return