Journal Home > Volume 17 , Issue 6

To elucidate the synergistic effect of dual-atom catalysts (DACs) at the microscopic level, we propose and construct a prototype heteronuclear system, CuNi/TiO2, in which the two elements of a pair have significantly different d electron-donating abilities, as a piece in the puzzle. Using density functional theory calculations, we investigate charge-dependent configurations of Cu-Ni dimers anchored on TiO2 by the mixing of individual constituent atoms. The d electron-donating ability determines deposition sequence and position of transition metal atoms on oxides, establishing dimer pattern and metal–support interactions. The interaction between Cu and Ni, beyond the coordination environment, predominately contributes to the synergistic effect. A complex adsorption–reduction behavior of H species on CuNi/TiO2 is observed. The reaction mechanism and catalytic activity of CuNi/TiO2 for hydrogen production are explored. At room temperature and high H coverages, CuNi/TiO2 shows better performance and efficiency than Ni1/TiO2. Our findings provide a new understanding of the synergistic effect on structure–activity relationships of supported dimers, which would be beneficial in the future design of various DACs or even atomically dispersed metal catalysts.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 November 2023
Revised: 19 December 2023
Accepted: 21 December 2023
Published: 27 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52272199).

Return