Journal Home > Volume 17 , Issue 6

Hydrogen is garnering growing attention as a green energy source with zero carbon emissions. However, most hydrogen production technologies still rely on the consumption of fossil fuels and are therefore unsustainable. This has driven the search for more environmentally friendly methods of hydrogen production. In this work, we present an innovative approach to enhance hydrogen generation via electrostatic interaction in the Escherichia coli and defective titanium dioxide (TiO2−x) biohybrids. Our method involves narrowing the forbidden bandwidth of TiO2 while introducing defect bands into its conduction band to facilitate visible light absorption and efficient charge separation. This biohybrid system, consisting of E. coli and TiO2−x, demonstrates a remarkable capability to produce 1.25 mmol of hydrogen within a 3-h timeframe under visible light irradiation. This accomplishment signifies a 3.31-fold rise in hydrogen production in comparison to E. coli, signifying a substantial enhancement in hydrogen production efficiency. Furthermore, we delve into the alterations in biological metabolites associated with hydrogen production and the changes in electron transfer in different biohybrid systems. It provides valuable insights into the understanding of the intrinsic mechanisms that drive the process. This work introduces a novel and promising avenue for achieving this exciting goal.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting solar hydrogen production via electrostatic interaction mediated E. coli-TiO2−x biohybrid system

Show Author's information Xingxing Lv1,2Weicheng Huang3Ya Gao1Rui Chen1Xiaowei Chen3Danqing Liu1( )Ling Weng1( )Liangcan He2,4( )Shaoqin Liu2,4
School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
School of Medicine and Health, and Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
Department of Physics, School of Science, Jimei University, Xiamen 361021, China
Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China

Abstract

Hydrogen is garnering growing attention as a green energy source with zero carbon emissions. However, most hydrogen production technologies still rely on the consumption of fossil fuels and are therefore unsustainable. This has driven the search for more environmentally friendly methods of hydrogen production. In this work, we present an innovative approach to enhance hydrogen generation via electrostatic interaction in the Escherichia coli and defective titanium dioxide (TiO2−x) biohybrids. Our method involves narrowing the forbidden bandwidth of TiO2 while introducing defect bands into its conduction band to facilitate visible light absorption and efficient charge separation. This biohybrid system, consisting of E. coli and TiO2−x, demonstrates a remarkable capability to produce 1.25 mmol of hydrogen within a 3-h timeframe under visible light irradiation. This accomplishment signifies a 3.31-fold rise in hydrogen production in comparison to E. coli, signifying a substantial enhancement in hydrogen production efficiency. Furthermore, we delve into the alterations in biological metabolites associated with hydrogen production and the changes in electron transfer in different biohybrid systems. It provides valuable insights into the understanding of the intrinsic mechanisms that drive the process. This work introduces a novel and promising avenue for achieving this exciting goal.

Keywords: hydrogen production, Escherichia coli, biohybrid system, TiO2−x nanoparticles

References(51)

[1]

Cui, S.; Tian, L. J.; Li, J.; Wang, X. M.; Liu, H. Q.; Fu, X. Z.; He, R. L.; Lam, P. K. S.; Huang, T. Y.; Li, W. W. Light-assisted fermentative hydrogen production in an intimately-coupled inorganic-bio hybrid with self-assembled nanoparticles. Chem. Eng. J. 2022, 428, 131254.

[2]

Fang, G. X.; Hou, Y.; Qiu, T.; Chen, Y. K.; Yu, W. Q.; Liu, X. Y.; Liu, Z.; Shen, J. Q.; Liu, H.; Zhou, W. J. Ultrafine sulfur-doped carbon nanoparticles enhanced the transmembrane bioelectricity of clostridium butyricum for biohydrogen production. Nano Energy 2023, 110, 108382.

[3]

Chen, Q. T.; Liu, Y. H.; Gu, X. Q.; Li, D.; Zhang, D. X.; Zhang, D. Q.; Huang, H.; Mao, B. D.; Kang, Z. H.; Shi, W. D. Carbon dots mediated charge sinking effect for boosting hydrogen evolution in Cu-In-Zn-S QDs/MoS2 photocatalysts. Appl. Catal. B Environ. 2022, 301, 120755.

[4]

Wu, D.; Zhang, W. M.; Fu, B. H.; Zhang, Z. H. Living intracellular inorganic-microorganism biohybrid system for efficient solar hydrogen generation. Joule 2022, 6, 2293–2303.

[5]

Bai, R. X.; Chu, W. Y.; Qiao, Z. M.; Lu, P.; Jiang, K.; Xu, Y. D.; Yang, J. Y.; Gao, T.; Xu, F. X.; Zhao, H. X. Metabolic regulation of NADH supply and hydrogen production in Enterobacter aerogenes by multi-gene engineering. Int. J. Hydrogen Energy 2023, 48, 909–920.

[6]

Li, X.; Yu, J. Y.; Jia, J.; Wang, A. Z.; Zhao, L. L.; Xiong, T. L.; Liu, H.; Zhou, W. J. Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 2019, 62, 127–135.

[7]

Jiang, D.; Yang, L. J.; Yuan, H. F.; Zhao, L. L.; Yu, J. Y.; Liu, X. Y.; Wang, Y. J.; Zhang, T.; Dong, T. J.; Huang, M. et al. Saturated hydrogen regulated Ti coordination of metallic TiH2/Ti electrode via in-situ electrochemical hydrogenation for enhanced hydrogen evolution reaction. Nano Energy 2022, 93, 106892.

[8]

Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264.

[9]

Chiu, Y. H.; Lai, T. H.; Chen, C. Y.; Hsieh, P. Y.; Ozasa, K.; Niinomi, M.; Okada, K.; Chang, T. F. M.; Matsushita, N.; Sone, M. et al. Fully depleted Ti-Nb-Ta-Zr-O nanotubes: Interfacial charge dynamics and solar hydrogen production. ACS Appl. Mater. Interfaces 2018, 10, 22997–23008.

[10]

Yang, P. D. Liquid sunlight: The evolution of photosynthetic biohybrids. Nano Lett. 2021, 21, 5453–5456.

[11]

Zhang, J. N.; Lei, Y. F.; Cao, S.; Hu, W. P.; Piao, L. Y.; Chen, X. B. Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Res. 2022, 15, 2013–2022.

[12]

Wang, K. Q.; Xu, W. H.; Zhang, W.; Wang, X.; Yang, X.; Li, J. F.; Zhang, H. L.; Li, J. J.; Wang, Z. K. Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications. Nano Res. Energy 2023, 2, e9120042.

[13]
Liu, K.; Wu, T.; Xu, L. Y.; Zhang, Z. Z.; Liu, Z. Y.; Wang, L. F.; Wang, Z. L. Flexo-photocatalysis in centrosymmetric semiconductors. Nano Res., in press, https://doi.org/10.1007/s12274-023-5957-7.
[14]

Liu, W. Q.; Peng, H. P.; Li, L. G.; Wang, M. M.; Geng, H. B.; Huang, X. Q. Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution. Nano Res. 2023, 16, 4488–4493.

[15]

Osman, A. I.; Mehta, N.; Elgarahy, A. M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A. H.; Rooney, D. W. Hydrogen production, storage, utilisation and environmental impacts: A review. Environ. Chem. Lett. 2022, 20, 153–188.

[16]

Kornienko, N.; Zhang, J. Z.; Sakimoto, K. K.; Yang, P. D.; Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 2018, 13, 890–899.

[17]

Fang, X.; Kalathil, S.; Reisner, E. Semi-biological approaches to solar-to-chemical conversion. Chem. Soc. Rev. 2020, 49, 4926–4952.

[18]

Sakimoto, K. K.; Kornienko, N.; Yang, P. D. Cyborgian material design for solar fuel production: The emerging photosynthetic biohybrid systems. Acc. Chem. Res. 2017, 50, 476–481.

[19]

Zhu, X. G.; Long, S. P.; Ort, D. R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261.

[20]

Han, H. X.; Tian, L. J.; Liu, D. F.; Yu, H. Q.; Sheng, G. P.; Xiong, Y. J. Reversing electron transfer chain for light-driven hydrogen production in biotic-abiotic hybrid systems. J. Am. Chem. Soc. 2022, 144, 6434–6441.

[21]

Sakimoto, K. K.; Kornienko, N.; Cestellos-Blanco, S.; Lim, J.; Liu, C.; Yang, P. D. Physical biology of the materials-microorganism interface. J. Am. Chem. Soc. 2018, 140, 1978–1985.

[22]

Lu, A. H.; Li, Y.; Jin, S.; Wang, X.; Wu, X. L.; Zeng, C. P.; Li, Y.; Ding, H. R.; Hao, R. X.; Lv, M. et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat. Commun. 2012, 3, 768.

[23]

Ding, Y. C.; Bertram, J. R.; Eckert, C.; Bommareddy, R. R.; Patel, R.; Conradie, A.; Bryan, S.; Nagpal, P. Nanorg microbial factories: Light-driven renewable biochemical synthesis using quantum dot-bacteria nanobiohybrids. J. Am. Chem. Soc. 2019, 141, 10272–10282.

[24]

Pi, S. S.; Yang, W. J.; Feng, W.; Yang, R. J.; Chao, W. X.; Cheng, W. B.; Cui, L.; Li, Z. D.; Lin, Y. L.; Ren, N. Q. et al. Solar-driven waste-to-chemical conversion by wastewater-derived semiconductor biohybrids. Nat. Sustain. 2023, 6, 1673–1684.

[25]

Wu, Z. L.; Liu, X. Y.; Li, H. J.; Sun, Z. Y.; Cao, M. S.; Li, Z. Z.; Fang, C. H.; Zhou, J. H.; Cao, C. B.; Dong, J. C. et al. A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation. Nat. Commun. 2023, 14, 2574.

[26]

Zheng, X. L.; Song, Y. M.; Liu, Y. H.; Yang, Y. Q.; Wu, D. X.; Yang, Y. J.; Feng, S. Y.; Li, J.; Liu, W. F.; Shen, Y. J. et al. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coord. Chem. Rev. 2023, 475, 214898.

[27]

Honda, Y.; Shinohara, Y.; Fujii, H. Visible light-driven, external mediator-free H2 production by a combination of a photosensitizer and a whole-cell biocatalyst: Escherichia coli expressing [FeFe]-hydrogenase and maturase genes. Catal. Sci. Technol. 2020, 10, 6006–6012.

[28]

An, B. L.; Wang, Y. Y.; Huang, Y. Y.; Wang, X. Y.; Liu, Y. Z.; Xun, D. M.; Church, G. M.; Dai, Z. J.; Yi, X.; Tang, T. C. et al. Engineered living materials for sustainability. Chem. Rev. 2023, 123, 2349–2419.

[29]

Wang, X. Y.; Zhang, S. N.; Zhang, J. C.; Wang, Y. M.; Jiang, X. Y.; Tao, Y. Q.; Li, D.; Zhong, C.; Liu, C. Rational design of functional amyloid fibrillar assemblies. Chem. Soc. Rev. 2023, 52, 4603–4631.

[30]

Luo, B. F.; Wang, Y. Z.; Li, D.; Shen, H. Q.; Xu, L. X.; Fang, Z.; Xia, Z. L.; Ren, J. L.; Shi, W. D.; Yong, Y. C. A periplasmic photosensitized biohybrid system for solar hydrogen production. Adv. Energy Mater. 2021, 11, 2100256.

[31]

Xiao, K. M.; Tsang, T. H.; Sun, D.; Liang, J.; Zhao, H.; Jiang, Z. F.; Wang, B.; Yu, J. C.; Wong, P. K. Interfacing iodine-doped hydrothermally carbonized carbon with Escherichia coli through an “add-on” mode for enhanced light-driven hydrogen production. Adv. Energy Mater. 2021, 11, 2100291.

[32]

Yang, M.; Mei, J.; Ren, Y. J.; Cui, J.; Liang, S. H.; Sun, S. D. Long-range electron synergy over Pt1-Co1/CN bimetallic single-atom catalyst in enhancing charge separation for photocatalytic hydrogen production. J. Energy Chem. 2023, 81, 502–509.

[33]

Gawlik, M.; Trawiński, J.; Skibiński, R. Imitation of phase I metabolism reactions of MAO-A inhibitors by titanium dioxide photocatalysis. Eur. J. Pharm. Sci. 2018, 114, 391–400.

[34]

Liao, S. K.; Chang, Y. H.; Wu, C. T.; Lai, Y. R.; Chen, W. Y. Fabrication of anthocyanin-sensitized nanocrystalline titanium dioxide solar cells using supercritical carbon dioxide. J. CO2 Util. 2017, 21, 513–520.

[35]

Wang, B.; Cheng, J. L.; Wu, Y. P. Titania nanotube synthesized by a facile, scalable and cheap hydrolysis method for reversible lithium-ion batteries. J. Alloys Compd. 2012, 527, 132–136.

[36]

Pipes, R.; Bhargav, A.; Manthiram, A. Nanostructured anatase titania as a cathode catalyst for Li-CO2 batteries. ACS Appl. Mater. Interfaces 2018, 10, 37119–37124.

[37]

Thi Quyen, V.; Jitae, K.; Thi Huong, P.; Thi Thu Ha, L.; My Thanh, D.; Minh Viet, N.; Quang Thang, P. Copper doped titanium dioxide as a low-cost visible light photocatalyst for water splitting. Solar Energy 2021, 218, 150–156.

[38]

Teh, C. Y.; Wu, T. Y.; Juan, J. C. An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. Chem. Eng. J. 2017, 317, 586–612.

[39]

Liccardo, L.; Bordin, M.; Sheverdyaeva, P. M.; Belli, M.; Moras, P.; Vomiero, A.; Moretti, E. Surface defect engineering in colored TiO2 hollow spheres toward efficient photocatalysis. Adv. Funct. Mater. 2023, 33, 2212486.

[40]

Wang, R. Y.; Shi, Z. Y.; Chen, J. C.; Wu, Q.; Chen, G. Q. Enhanced co-production of hydrogen and poly-( R)-3-hydroxybutyrate by recombinant PHB producing E. coli over-expressing hydrogenase 3 and acetyl-CoA synthetase. Metab. Eng. 2012, 14, 496–503.

[41]

Maeda, T.; Tran, K. T.; Yamasaki, R.; Wood, T. K. Current state and perspectives in hydrogen production by Escherichia coli: Roles of hydrogenases in glucose or glycerol metabolism. Appl. Microbiol. Biotechnol. 2018, 102, 2041–2050.

[42]

Lorenzi, M.; Gamache, M. T.; Redman, H. J.; Land, H.; Senger, M.; Berggren, G. Light-driven [FeFe] hydrogenase based H2 production in E. coli: A model reaction for exploring E. coli based semiartificial photosynthetic systems. ACS Sustain. Chem. Eng. 2022, 10, 10760–10767.

[43]

Valle, A.; Cantero, D.; Bolívar, J. Metabolic engineering for the optimization of hydrogen production in Escherichia coli: A review. Biotechnol. Adv. 2019, 37, 616–633.

[44]

Ramprakash, B.; Incharoensakdi, A. Dark fermentative hydrogen production from pretreated garden wastes by Escherichia coli. Fuel 2022, 310, 122217.

[45]

Aprile, C.; Corma, A.; Garcia, H. Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: From subnanometric to submillimetric length scale. Phys. Chem. Chem. Phys. 2008, 10, 769–783.

[46]

Wang, B.; Zeng, C.; Chu, K. H.; Wu, D.; Yip, H. Y.; Ye, L.; Wong, P. K. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles. Adv. Energy Mater. 2017, 7, 1700611.

[47]

Shen, H. Q.; Wang, Y. Z.; Liu, G. W.; Li, L. H.; Xia, R.; Luo, B. F.; Wang, J. X.; Suo, D.; Shi, W. D.; Yong, Y. C. A whole-cell inorganic-biohybrid system integrated by reduced graphene oxide for boosting solar hydrogen production. ACS Catal. 2020, 10, 13290–13295.

[48]

Zhang, R. T.; He, Y.; Yi, J.; Zhang, L. J.; Shen, C. P.; Liu, S. J.; Liu, L. F.; Liu, B. H.; Qiao, L. Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio-abiotic hybrid system. Chem 2020, 6, 234–249.

[49]

Liu, T. X.; Luo, X. B.; Wu, Y. D.; Reinfelder, J. R.; Yuan, X.; Li, X. M.; Chen, D. D.; Li, F. B. Extracellular electron shuttling mediated by soluble c-type cytochromes produced by Shewanella oneidensis MR-1. Environ. Sci. Technol. 2020, 54, 10577–10587.

[50]

Watanabe, H. C.; Yamashita, Y.; Ishikita, H. Electron transfer pathways in a multiheme cytochrome MtrF. Proc. Natl. Acad. Sci. USA 2017, 114, 2916–2921.

[51]

Hu, B. F.; Ge, Z. P.; Li, X. Y. Interface adsorption taking the most advantageous conformation for electron transfer between graphene and cytochrome c. J. Nanosci. Nanotechnol. 2015, 15, 4863–4869.

File
12274_2024_6432_MOESM1_ESM.pdf (907.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2023
Revised: 13 December 2023
Accepted: 20 December 2023
Published: 25 January 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52172085, 52273287, 52202091, and 51825202), the Key Laboratory of Micro-systems and Micro-structures Manufacturing (Harbin Institute of Technology), Ministry of Education (No. AUEA1890200122), was partially funded by the Natural Science Foundation of Heilongjiang Province of China for Excellent Young Scholars (No. YQ2022E020), and Heilongjiang Touyan Team (No. HITTY-20190036).

Return