Journal Home > Volume 17 , Issue 6

Advancing efficient and affordable electrocatalysts to boost the oxygen evolution reaction (OER) is pivotal for sustainable green hydrogen production. Herein, we propose the fabrication of nickel-iron alloy nanoparticles-encapsulated on N-doped vertically aligned graphene array on carbon cloth (NiFe@NVG/CC) as a highly active three-dimensional (3D) catalyst electrode for OER. In 1 M KOH, such NiFe@NVG/CC demonstrates outstanding catalytic performance, necessitating merely overpotential of 245 mV for achieving a current density of 10 mA·cm−2, a remarkably low Tafel slope of 36.2 mV·dec−1. Furthermore, density functional theory calculations validate that the incorporate of N species into graphene can reinforce the electrocatalytic activity though reducing the reaction energy barrier during the conversion of *O to *OOH intermediates. The outstanding performance and structural benefits of NiFe@NVG/CC offer valuable insights for the development of innovative and efficient electrocatalysts for water oxidation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancing alkaline water oxidation with NiFe alloy-encapsulated nitrogen-doped vertical graphene array

Show Author's information Jue Nan1Beirong Ye2Xun He2Chen Li2Wanli Zhang1Qian Liu3Luming Li3Wei Chu3Xuping Sun2,4( )Yongqi Zhang2( )
School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611731, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China

Abstract

Advancing efficient and affordable electrocatalysts to boost the oxygen evolution reaction (OER) is pivotal for sustainable green hydrogen production. Herein, we propose the fabrication of nickel-iron alloy nanoparticles-encapsulated on N-doped vertically aligned graphene array on carbon cloth (NiFe@NVG/CC) as a highly active three-dimensional (3D) catalyst electrode for OER. In 1 M KOH, such NiFe@NVG/CC demonstrates outstanding catalytic performance, necessitating merely overpotential of 245 mV for achieving a current density of 10 mA·cm−2, a remarkably low Tafel slope of 36.2 mV·dec−1. Furthermore, density functional theory calculations validate that the incorporate of N species into graphene can reinforce the electrocatalytic activity though reducing the reaction energy barrier during the conversion of *O to *OOH intermediates. The outstanding performance and structural benefits of NiFe@NVG/CC offer valuable insights for the development of innovative and efficient electrocatalysts for water oxidation.

Keywords: density functional theory, electrocatalyst, oxygen evolution reaction, NiFe alloy, N-doped vertical graphene array

References(51)

[1]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[2]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[3]

Liu, R.; Sun, M. Z.; Liu, X. J.; Lv, Z. H.; Yu, X. Y.; Wang, J. M.; Liu, Y. R.; Li, L. H.; Feng, X.; Yang, W. X. et al. Enhanced metal-support interactions boost the electrocatalytic water splitting of supported ruthenium nanoparticles on a Ni3N/NiO heterojunction at industrial current density. Angew. Chem., Int. Ed. 2023, 62, e202312644.

[4]

Zhou, J.; Wang, F. F.; Wang, H. Q.; Hu, S. X.; Zhou, W. J.; Liu, H. Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. 2023, 16, 2085–2093.

[5]

Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.

[6]

Jin, H. Y.; Yu, H. M.; Li, H. B.; Davey, K.; Song, T.; Paik, U.; Qiao, S. Z. MXene analogue: A 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem., Int. Ed. 2022, 61, e202203850.

[7]
Tian, C.; Liu, R.; Zhang, Y.; Yang, W. X.; Wang, B. Ru-doped functional porous materials for electrocatalytic water splitting. Nano Res., in press, DOI: 10.1007/s12274-023-6003-5.
[8]

Ouyang, L.; He, X.; Sun, Y. T.; Zhang, L. C.; Zhao, D. L.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Asiri, A. M.; Liu, Q. et al. RuO2 nanoparticle-decorated TiO2 nanobelt array as a highly efficient electrocatalyst for the hydrogen evolution reaction at all pH values. Inorg. Chem. Front. 2022, 9, 6602–6607.

[9]

Yang, W. X.; Zhang, W. Y.; Liu, R.; Lv, F.; Chao, Y. G.; Wang, Z. C.; Guo, S. J. Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. Chin. J. Catal. 2022, 43, 110–115.

[10]

Wang, X. Y.; He, Y.; Han, X. P.; Zhao, J.; Li, L. L.; Zhang, J. F.; Zhong, C.; Deng, Y. D.; Hu, W. B. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res. 2022, 15, 1246–1253.

[11]

Liang, J.; Li, Z. X.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Ying, B. W.; Sun, S. J.; Cai, Z. W. et al. Electrocatalytic seawater splitting: Nice designs, advanced strategies, challenges and perspectives. Mater. Today 2023, 69, 193–235.

[12]

Yang, W. X.; Wang, Z. C.; Zhang, W. Y.; Guo, S. J. Electronic-structure tuning of water-splitting nanocatalysts. Trends Chem. 2019, 1, 259–271.

[13]

Jeon, S. S.; Kang, P. W.; Klingenhof, M.; Lee, H.; Dionigi, F.; Strasser, P. Active surface area and intrinsic catalytic oxygen evolution reactivity of NiFe LDH at reactive electrode potentials using capacitances. ACS Catal. 2023, 13, 1186–1196.

[14]

Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670–8674.

[15]

Liu, X. J.; Liu, R.; Wang, J. M.; Liu, Y. R.; Li, L. H.; Yang, W. X.; Feng, X.; Wang, B. Synergizing high valence metal sites and amorphous/crystalline interfaces in electrochemical reconstructed CoFeOOH heterostructure enables efficient oxygen evolution reaction. Nano Res. 2022, 15, 8857–8864.

[16]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[17]

Jin, H. Y.; Liu, X. Y.; An, P. F.; Tang, C.; Yu, H. M.; Zhang, Q. H.; Peng, H. J.; Gu, L.; Zheng, Y.; Song, T. et al. Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution. Nat. Commun. 2023, 14, 354.

[18]

Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

[19]

Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas K. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res. 2022, 15, 4799–4806.

[20]

Wang, L. G.; Su, H.; Zhang, Z.; Xin, J. J.; Liu, H.; Wang, X. G.; Yang, C. Y.; Liang, X.; Wang, S. W.; Liu, H. et al. Co-Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202314185.

[21]

Zhai, Y. Y.; Ren, X. R.; Sun, Y.; Li, D.; Wang, B. L.; Liu, S. Z. Synergistic effect of multiple vacancies to induce lattice oxygen redox in NiFe-layered double hydroxide OER catalysts. Appl. Catal. B Environ. 2023, 323, 122091.

[22]

Wei, P.; Sun, X. P.; Liang, Q. R.; Li, X. G.; He, Z. M.; Hu, X. S.; Zhang, J. X.; Wang, M. H.; Li, Q.; Yang, H. et al. Enhanced oxygen evolution reaction activity by encapsulating NiFe alloy nanoparticles in Nitrogen-doped carbon nanofibers. ACS Appl. Mater. Interfaces 2020, 12, 31503–31513.

[23]

Wu, L. B.; Ning, M. H.; Xing, X. X.; Wang, Y.; Zhang, F. H.; Gao, G. H.; Song, S. W.; Wang, D. Z.; Yuan, C. Q.; Yu, L. et al. Boosting oxygen evolution reaction of (Fe,Ni)OOH via defect engineering for anion exchange membrane water electrolysis under industrial conditions. Adv. Mater. 2023, 35, 2306097.

[24]

Wu, Q. N.; Wang, Y. N.; Zhang, K. X.; Xie, Z. B.; Sun, K.; An, W.; Liang, X.; Zou, X. X. Advances and status of anode catalysts for proton exchange membrane water electrolysis technology. Mater. Chem. Front. 2023, 7, 1025–1045.

[25]

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

[26]

Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small, 2020, 16, 2003916.

[27]

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

[28]

Kang, Q. L.; Lai, D. W.; Tang, W. Y.; Lu, Q. Y.; Gao, F. Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction. Chem. Sci. 2021, 12, 3818–3835.

[29]

Zhang, G. W.; Zeng, J. R.; Yin, J.; Zuo, C. Y.; Wen, P.; Chen, H. T.; Qiu, Y. J. Iron-facilitated surface reconstruction to in-situ generate nickel-iron oxyhydroxide on self-supported FeNi alloy fiber paper for efficient oxygen evolution reaction. Appl. Catal. B Environ. 2021, 286, 119902.

[30]

Wang, A. Q.; Zhao, Z. L.; Hu, D.; Niu, J. F.; Zhang, M.; Yan, K.; Lu, G. Tuning the oxygen evolution reaction on a nickel-iron alloy via active straining. Nanoscale, 2019, 11, 426–430.

[31]

Feng, Y.; Yu, X. Y.; Paik, U. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction. Sci. Rep. 2016, 6, 34004.

[32]

Gong, Z. C.; Liu, R.; Gong, H. S.; Ye, G. L.; Liu, J. J.; Dong, J. C.; Liao, J. W.; Yan, M. M.; Liu, J. B.; Huang, K. et al. Constructing a graphene-encapsulated amorphous/crystalline heterophase NiFe alloy by microwave thermal shock for boosting the oxygen evolution reaction. ACS Catal. 2021, 11, 12284–12292.

[33]

Feng, Y. Y.; Zhang, H. J.; Fang, L.; Mu, Y. P.; Wang, Y. Uniquely monodispersing NiFe alloyed nanoparticles in three-dimensional strongly linked sandwiched graphitized carbon sheets for high-efficiency oxygen evolution reaction. ACS Catal. 2016, 6, 4477–4485.

[34]

Zhang, Z. P.; Qin, Y. S.; Dou, M. L.; Ji, J.; Wang, F. One-step conversion from Ni/Fe polyphthalocyanine to N-doped carbon supported Ni-Fe nanoparticles for highly efficient water splitting. Nano Energy 2016, 30, 426–433.

[35]

Zhang, L.; Hu, J. S.; Huang, X. H.; Song, J.; Lu, S. Y. Particle-in-box nanostructured materials created via spatially confined pyrolysis as high performance bifunctional catalysts for electrochemical overall water splitting. Nano Energy 2018, 48, 489–499.

[36]

Zhang, Z. Y.; Lee, C. S.; Zhang, W. J. Vertically aligned graphene nanosheet arrays: Synthesis, properties and applications in electrochemical energy conversion and storage. Adv. Energy Mater. 2017, 7, 1700678.

[37]

Mu, Y. B.; Han, M. S.; Wu, B. K.; Wang, Y. M.; Li, Z. W.; Li, J. X.; Li, Z.; Wang, S.; Wan, J. Y.; Zeng, L. Nitrogen, oxygen-codoped vertical graphene arrays coated 3D flexible carbon nanofibers with high silicon content as an ultrastable anode for superior lithium storage. Adv. Sci. 2022, 9, 2104685.

[38]

Wang, Y. L.; Shi, R.; Shang, L.; Peng, L. S.; Chu, D. W.; Han, Z. J.; Waterhouse, G. I. N.; Zhang, R.; Zhang, T. R. Vertical graphene array for efficient electrocatalytic reduction of oxygen to hydrogen peroxide. Nano Energy 2022, 96, 107046.

[39]

Fang, R. P.; Han, Z. J.; Li, J. B.; Yu, Z. C.; Pan, J.; Cheong, S.; Tilley, R. D.; Trujillo, F.; Wang, D. W. Rationalized design of hyperbranched trans-scale graphene arrays for enduring high-energy lithium metal batteries. Sci. Adv. 2022, 8, eadc9961.

[40]

He, X.; Li, X. H.; Fan, X. Y.; Li, J.; Zhao, D. L.; Zhang, L. C.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Xie, L. S. et al. Ambient electroreduction of nitrite to ammonia over Ni nanoparticle supported on molasses-derived carbon sheets. ACS Appl. Nano Mater. 2022, 5, 14246–14250.

[41]

Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

[42]

Ha, Y.; Shi, L. X.; Yan, X. X.; Chen, Z. L.; Li, Y. P.; Xu, W.; Wu, R. B. Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C nanonetwork. ACS Appl. Mater. Interfaces 2019, 11, 45546–45553.

[43]

Xie, C.; Wang, Y. Y.; Hu, K.; Tao, L.; Huang, X. B.; Huo, J.; Wang, S. Y. In situ confined synthesis of molybdenum oxide decorated nickel-iron alloy nanosheets from MoO42- intercalated layered double hydroxides for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 87–91.

[44]

Chen, Y. H.; Peng, J.; Duan, W. T.; He, G. Q.; Tang, Z. H. NiFe alloyed nanoparticles encapsulated in nitrogen doped carbon nanotubes for bifunctional electrocatalysis toward rechargeable Zn-air batteries. ChemCatChem 2019, 11, 5994–6001.

[45]

He, X.; Hu, L.; Xie, L. S.; Li, Z. R.; Chen, J.; Li, X. H.; Li, J.; Zhang, L. C.; Fang, X. D.; Zheng, D. D. et al. Ambient ammonia synthesis via nitrite electroreduction over NiS2 nanoparticles-decorated TiO2 nanoribbon array. J. Colloid Interface Sci. 2023, 634, 86–92.

[46]

Han, Q. L.; Luo, Y. H.; Li, J. D.; Du, X. H.; Sun, S. J.; Wang, Y. J.; Liu, G. H.; Chen, Z. W. Efficient NiFe-based oxygen evolution electrocatalysts and origin of their distinct activity. Appl. Catal. B Environ. 2022, 304, 120937.

[47]

He, X.; Li, J.; Li, R. Z.; Zhao, D. L.; Zhang, L. C.; Ji, X. C.; Fan, X. Y.; Chen, J.; Wang, Y.; Luo, Y. S. et al. Ambient ammonia synthesis via nitrate electroreduction in neutral media on Fe3O4 nanoparticles-decorated TiO2 nanoribbon array. Inorg. Chem. 2023, 62, 25–29.

[48]

Liu, B.; Yuan, B. W.; Wang, C.; You, S. J.; Liu, J.; Meng, X.; Xu, X. Q.; Cai, Z.; Xie, J. H.; Zou, J. L. Highly-dispersed NiFe alloys in-situ anchored on outer surface of Co, N co-doped carbon nanotubes with enhanced stability for oxygen electrocatalysis. J. Colloid Interface Sci. 2023, 635, 208–220.

[49]

Huang, L.; Guan, T. X.; Su, H.; Zhong, Y.; Cao, F.; Zhang, Y. Q.; Xia, X. H.; Wang, X. L.; Bao, N. Z.; Tu, J. P. Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing polypyrrole@sulfur nanospheres for flexible energy storage. Angew. Chem. 2022, 134, e202212151.

[50]

Wu, H.; Wang, Z. C.; Li, Z. X.; Ma, Y. J.; Ding, F.; Li, F. Q.; Bian, H. F.; Zhai, Q. X.; Ren, Y. L.; Shi, Y. X. et al. Medium-entropy metal selenides nanoparticles with optimized electronic structure as high-performance bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater. 2023, 13, 2300837.

[51]

Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878.

Video
12274_2024_6431_MOESM2_ESM.avi
File
12274_2024_6431_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 November 2023
Revised: 18 December 2023
Accepted: 20 December 2023
Published: 25 January 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52202214, 52001059, 52001059, and 52202215), Sichuan Natural Science Foundation (No. 23NSFSC3565), China National Postdoctoral Program for Innovative Talents (No. BX2021053), and China Postdoctoral Science Foundation (No. 2021M700680).

Return