AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional dual-anion compensation of amphoteric glycine hydrochloride enabled highly stable perovskite solar cells with prolonged carrier lifetime

Lina Qin1,§Mengfei Zhu1,§Yuren Xia1,§Xingkai Ma1Daocheng Hong1Yuxi Tian1Zuoxiu Tie1,2,3( )Zhong Jin1,2,3( )
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Nanjing Tieming Energy Technology Co. Ltd., Nanjing 210093, China
Suzhou Tierui New Energy Technology Co. Ltd., Suzhou 215228, China

§ Lina Qin, Mengfei Zhu, and Yuren Xia contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, we introduced glycine hydrochloride (GlyHCl) as an additive for FA0.9MA0.1PbI3−x%-GlyHCl perovskite material. The Cl ion in GlyHCl facilitate α-phase perovskite formation, while the –COO group bridges with Pb2+ cations, addressing anion vacancies and enhancing absorption intensity.

Abstract

Throughout years, the two-step spin-coating process is the most common method to prepare organic lead halide perovskite materials. However, the short reaction time of dropping the solution at the second step means that PbI2 cannot be completely transformed into perovskite phase. To solve this problem, we report the introduction of glycine hydrochloride (GlyHCl) into the second step of the two-step spin-coating process to prepare a FA0.9MA0.1PbI3-x%-GlyHCl perovskite material (namely FAMA-x%-GlyHCl, where FA = formamidinium, MA = methylammonium, and x% stands for the molar ratio of GlyHCl added in FA iodide/MA iodide (FAI/MAI) precursor solution). The Cl ion in GlyHCl assists the formation of α-phase perovskite, and the –COO group coordinates with Pb2+ cation in a bridging way, making up for the anion vacancy in perovskite lattice and resulting in high absorption intensity. The perovskite solar cells (PSCs) based on FAMA-9%-GlyHCl achieve a long carrier lifetime (527.0 ns), a photoelectric conversion efficiency (PCE) of 19.40% and good thermal stability, maintaining 85.8% of the initial PCE after being continuously heated at 60 °C for 500 h. This study helps to solve the problem of incomplete reaction in the two-step spin-coating process and puts forward a new solution for preparing high coverage perovskite films with large grain size.

Electronic Supplementary Material

Download File(s)
12274_2024_6428_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

[2]

Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

[3]

Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S. I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689.

[4]

McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155.

[5]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[6]
Liang, Z.; Zhang, Y.; Xu, H. F.; Chen, W. J.; Liu, B. Y.; Zhang, J. Y.; Zhang, H.; Wang, Z. H.; Kang, D. H.; Zeng, J. R. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, in press, DOI: 10.1038/s41586-023-06784-0.
[7]
NREL. Best research-cell efficiency chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed July 21, 2023).
[8]

Bai, S.; Da, P. M.; Li, C.; Wang, Z. P.; Yuan, Z. C.; Fu, F.; Kawecki, M.; Liu, X. J.; Sakai, N.; Wang, J. T. W. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250.

[9]

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

[10]

Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.

[11]

Park, B. W.; Kwon, H. W.; Lee, Y.; Lee, D. Y.; Kim, M. G.; Kim, G.; Kim, K. J.; Kim, Y. K.; Im, J.; Shin, T. J. et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 2021, 6, 419–428.

[12]

Ye, F. H.; Ma, J. J.; Chen, C.; Wang, H. B.; Xu, Y. H.; Zhang, S. P.; Wang, T.; Tao, C.; Fang, G. J. Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 2021, 33, 2007126.

[13]

Xiong, Z.; Chen, X.; Zhang, B.; Odunmbaku, G. O.; Ou, Z. P.; Guo, B.; Yang, K.; Kan, Z. P.; Lu, S. R.; Chen, S. S. et al. Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 2022, 34, 2106118.

[14]

Wang, H. H.; Wang, Z. W.; Yang, Z.; Xu, Y. Z.; Ding, Y.; Tan, L. G.; Yi, C. Y.; Zhang, Z.; Meng, K.; Chen, G. et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater. 2020, 32, 2000865.

[15]

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

[16]

Li, N. X.; Niu, X. X.; Li, L.; Wang, H.; Huang, Z. J.; Zhang, Y.; Chen, Y. H.; Zhang, X.; Zhu, C.; Zai, H. C. et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 2021, 373, 561–567.

[17]

Chen, Q.; Zhou, H. P.; Fang, Y. H.; Stieg, A. Z.; Song, T. B.; Wang, H. H.; Xu, X. B.; Liu, Y. S.; Lu, S. R.; You, J. B. et al. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 2015, 6, 7269.

[18]

Qin, M. C.; Xue, H. B.; Zhang, H. K.; Hu, H. L.; Liu, K.; Li, Y. H.; Qin, Z. T.; Ma, J. J.; Zhu, H. P.; Yan, K. Y. et al. Precise control of perovskite crystallization kinetics via sequential a-site doping. Adv. Mater. 2020, 32, 2004630.

[19]

Min, H.; Kim, M.; Lee, S. U.; Kim, H.; Kim, G.; Choi, K.; Lee, J. H.; Seok, S. I. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 2019, 366, 749–753.

[20]

Zhang, Y.; Li, Y.; Zhang, L.; Hu, H. L.; Tang, Z. K.; Xu, B. M.; Park, N. G. Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells. Adv. Energy Mater. 2021, 11, 2102538.

[21]

Wang, Q.; Zheng, X. P.; Deng, Y. H.; Zhao, J. J.; Chen, Z. L.; Huang, J. S. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 2017, 1, 371–382.

[22]

Yang, S. J.; Kim, M.; Ko, H.; Sin, D. H.; Sung, J. H.; Mun, J.; Rho, J.; Jo, M. H.; Cho, K. Visualization and investigation of charge transport in mixed-halide perovskite via lateral-structured photovoltaic devices. Adv. Funct. Mater. 2018, 28, 1804067.

[23]

Ibrahim, M.; Nada, A.; Kamal, D. E. Density functional theory and FTIR spectroscopic study of carboxyl group. Indian J. Pure Appl. Phys. 2005, 43, 911–917.

[24]

Jeong, J.; Kim, M.; Seo, J.; Lu, H. Z.; Ahlawat, P.; Mishra, A.; Yang, Y. G.; Hope, M. A.; Eickemeyer, F. T.; Kim, M. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385.

[25]

Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; De Angelis, F. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of theory and experiment. J. Phys. Chem. Lett. 2014, 5, 279–284.

[26]

Kim, M.; Kim, G. H.; Lee, T. K.; Choi, I. W.; Choi, H. W.; Jo, Y.; Yoon, Y. J.; Kim, J. W.; Lee, J.; Huh, D. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3, 2179–2192.

[27]

Xie, L.; Chen, J. Z.; Vashishtha, P.; Zhao, X.; Shin, G. S.; Mhaisalkar, S. G.; Park, N. G. Importance of functional groups in cross-linking methoxysilane additives for high-efficiency and stable perovskite solar cells. ACS Energy Lett. 2019, 4, 2192–2200.

[28]

Zhu, X. J.; Du, M. Y.; Feng, J. S.; Wang, H.; Xu, Z.; Wang, L. K.; Zuo, S. N.; Wang, C. Y.; Wang, Z. Y.; Zhang, C. et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem., Int. Ed. 2021, 60, 4238–4244.

[29]

Zhu, M. F.; Xia, Y. R.; Qin, L. N.; Zhang, K. Q.; Liang, J. C.; Zhao, C.; Hong, D. C.; Jiang, M. H.; Song, X. M.; Wei, J. et al. Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells. Nano Res. 2023, 16, 6849–6858.

[30]

Zhu, M. F.; Qin, L. N.; Xia, Y. R.; Liang, J. C.; Wang, Y. D.; Hong, D. C.; Tian, Y. X.; Tie, Z. X.; Jin, Z. Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells. Nano Res. 2024, 17, 1508–1515

Nano Research
Pages 5131-5137
Cite this article:
Qin L, Zhu M, Xia Y, et al. Multifunctional dual-anion compensation of amphoteric glycine hydrochloride enabled highly stable perovskite solar cells with prolonged carrier lifetime. Nano Research, 2024, 17(6): 5131-5137. https://doi.org/10.1007/s12274-024-6428-5
Topics:

601

Views

4

Crossref

1

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 06 October 2023
Revised: 18 December 2023
Accepted: 18 December 2023
Published: 23 January 2024
© Tsinghua University Press 2024
Return