AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrasmall copper-based clusterzymes ameliorate Achilles tendinopathy by inhibiting acute oxidative stress

Xuzhuo Chen1,§Yi Du2,§Yazi Huang4Xianhao Zhou5Xinru Xie1Chang Li3Chen Zhao5Fengrong Dai3( )Xijiao Yu2( )Shanyong Zhang1( )
Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
Department of Endodontics, Central Laboratory, Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan 250001, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Department of Chemistry, College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

§ Xuzhuo Chen and Yi Du contributed equally to this work.

Show Author Information

Graphical Abstract

In this study, we designed and synthesized a copper(I)-based cluster (Cu11) with enzyme-like activities and reactive oxygen species (ROS)-scavenging capabilities, positioning it as a promising candidate for anti-inflammatory and anti-ROS therapy.

Abstract

Tendinopathy is a prevalent musculoskeletal disorder, accounting for over 30% of musculoskeletal lesions. However, current therapeutic strategies for tendinopathy are limited and often yield unsatisfactory clinical outcomes. Therefore, there is a critical need to explore novel therapeutic approaches with minimal side effects for tendinopathy and its early lesions. In this study, we successfully designed and synthesized a copper(I)-based nanocluster, named Cu11, which possesses remarkable enzyme-like and ROS-scavenging activities. This unique combination of properties qualifies Cu11 as an attractive anti-inflammatory and anti-ROS agent. The Cu11 clusterzymes specifically target mitochondria, effectively scavenging excessive reactive oxygen species (ROS) and reducing oxidative stress. Furthermore, Cu11 clusterzymes inhibit the activation of key signaling pathways involved in inflammation, namely tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB, leading to a decrease in the release of proinflammatory cytokines. Excitingly, our in vivo experiments using a collagenase-induced acute Achilles tendinopathy model demonstrated that Cu11 clusterzymes effectively alleviate inflammation and oxidative stress, without causing systemic toxicity. This study highlights the potential of copper-based clusterzymes as therapeutic agents for the treatment of Achilles tendinopathy and other inflammatory diseases. The unique enzyme-like and ROS-scavenging activities of Cu11 make it a promising candidate for further development and clinical translation.

Electronic Supplementary Material

Download File(s)
12274_2024_6426_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Millar, N. L.; Murrell, G. A. C.; McInnes, I. B. Inflammatory mechanisms in tendinopathy-towards translation. Nat. Rev. Rheumatol. 2017, 13, 110–122.

[2]

Millar, N. L.; Silbernagel, K. G.; Thorborg, K.; Kirwan, P. D.; Galatz, L. M.; Abrams, G. D.; Murrell, G. A. C.; McInnes, I. B.; Rodeo, S. A. Tendinopathy. Nat. Rev. Dis. Primers 2021, 7, 1.

[3]

Van Der Vlist, A. C.; Breda, S. J.; Oei, E. H. G.; Verhaar, J. A. N.; De Vos, R. J. Clinical risk factors for Achilles tendinopathy: A systematic review. Br. J. Sports Med. 2019, 53, 1352–1361.

[4]

Shen, H. T.; Cheng, L. X.; Zheng, Q. Q.; Liu, W. D.; Wang, Y. Scavenging of reactive oxygen species can adjust the differentiation of tendon stem cells and progenitor cells and prevent ectopic calcification in tendinopathy. Acta. Biomater. 2022, 152, 440–452.

[5]

Liu, A. L.; Wang, Q.; Zhao, Z. N.; Wu, R.; Wang, M. C.; Li, J. W.; Sun, K. Y.; Sun, Z. Y.; Lv, Z. Y.; Xu, J. et al. Nitric oxide nanomotor driving exosomes-loaded microneedles for achilles tendinopathy healing. ACS Nano 2021, 15, 13339–13350.

[6]

Liu, R. C.; Zhou, B.; Zhang, H.; Chen, Y. W.; Fan, C. M.; Zhang, T.; Qin, T.; Han, J.; Zhang, S. C.; Chen, X. et al. Inhibition of ROS activity by controlled release of proanthocyanidins from mesoporous silica nanocomposites effectively ameliorates heterotopic ossification in tendon. Chem. Eng. J. 2021, 420, 129415.

[7]

Wang, S. K.; Yao, Z. X.; Zhang, X. Y.; Li, J. H.; Huang, C.; Ouyang, Y. M.; Qian, Y.; Fan, C. Y. Energy-supporting enzyme-mimic nanoscaffold facilitates tendon regeneration based on a mitochondrial protection and microenvironment remodeling strategy. Adv. Sci. (Weinh.) 2022, 9, e2202542.

[8]

Itoigawa, Y.; Yoshida, K.; Nojiri, H.; Morikawa, D.; Kawasaki, T.; Wada, T.; Koga, A.; Maruyama, Y.; Ishijima, M. Association of recurrent tear after arthroscopic rotator cuff repair and superoxide-induced oxidative stress. Am. J. Sports Med. 2021, 49, 2048–2055.

[9]

Fu, S. C.; Yeung, M. Y.; Rolf, C. G.; Yung, P. S. H.; Chan, K. M.; Hung, L. K. Hydrogen peroxide induced tendinopathic changes in a rat model of patellar tendon injury. J. Orthop. Res. 2018, 36, 3268–3274.

[10]

Willems, P. H. G. M.; Rossignol, R.; Dieteren, C. E. J.; Murphy, M. P.; Koopman, W. J. H. Redox Homeostasis and mitochondrial dynamics. Cell. Metab. 2015, 22, 207–218.

[11]

Forrester, S. J.; Kikuchi, D. S.; Hernandes, M. S.; Xu, Q.; Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 2018, 122, 877–902.

[12]

Guo, Y.; Guan, T.; Shafiq, K.; Yu, Q.; Jiao, X.; Na, D.; Li, M. Y.; Zhang, G. H.; Kong, J. M. Mitochondrial dysfunction in aging. Ageing Res. Rev. 2023, 88, 101955.

[13]

Xu, Y. M.; Hsu, J. C.; Xu, L. Y.; Chen, W. Y.; Cai, W. B.; Wang, K. Nanomedicine-based adjuvant therapy: A promising solution for lung cancer. J. Nanobiotechnol. 2023, 21, 211.

[14]

Pena, Q.; Wang, A.; Zaremba, O.; Shi, Y.; Scheeren, H. W.; Metselaar, J. M.; Kiessling, F.; Pallares, R. M.; Wuttke, S.; Lammers, T. Metallodrugs in cancer nanomedicine. Chem. Soc. Rev. 2022, 51, 2544–2582.

[15]

Lin, Z. K.; Goswami, N.; Xue, T. T.; Chai, O. J. H.; Xu, H. J.; Liu, Y. X.; Su, Y.; Xie, J. P. Engineering metal nanoclusters for targeted therapeutics: From targeting strategies to therapeutic applications. Adv. Funct. Mater. 2021, 31, 2105662.

[16]

Yang, G.; Wang, Z. P.; Du, F. L.; Jiang, F. Y.; Yuan, X.; Ying, J. Y. Ultrasmall coinage metal nanoclusters as promising theranostic probes for biomedical applications. J. Am. Chem. Soc. 2023, 145, 11879–11898.

[17]

Dou, X. Y.; Chen, X. Y.; Zhu, H. G.; Liu, Y.; Chen, D. Y.; Yuan, X.; Yao, Q. F.; Xie, J. P. Water-soluble metal nanoclusters: Recent advances in molecular-level exploration and biomedical applications. Dalton Trans. 2019, 48, 10385–10392.

[18]

Hua, Y.; Shao, Z. H.; Zhai, A. Q.; Zhang, L. J.; Wang, Z. Y.; Zhao, G.; Xie, F. W.; Liu, J. Q.; Zhao, X. L.; Chen, X. Y. et al. Water-soluble Au25 clusters with single-crystal structure for mitochondria-targeting radioimmunotherapy. ACS Nano 2023, 17, 7837–7846.

[19]

Yang, Z. Z.; Yang, A. L.; Ma, W.; Ma, K.; Lv, Y. K.; Peng, P.; Zang, S. Q.; Li, B. J. Atom-precise fluorescent copper cluster for tumor microenvironment targeting and transient chemodynamic cancer therapy. J. Nanobiotechnol. 2022, 20, 20.

[20]

Liu, Z. H.; Wu, Z. N.; Yao, Q. F.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today 2021, 36, 101053.

[21]

Hua, Y.; Huang, J. H.; Shao, Z. H.; Luo, X. M.; Wang, Z. Y.; Liu, J. Q.; Zhao, X. L.; Chen, X. Y.; Zang, S. Q. Composition-dependent enzyme mimicking activity and radiosensitizing effect of bimetallic clusters to modulate tumor hypoxia for enhanced cancer therapy. Adv. Mater. 2022, 34, e2203734.

[22]

Liu, H. L.; Li, Y. H.; Sun, S.; Xin, Q.; Liu, S. H.; Mu, X. Y.; Yuan, X.; Chen, K.; Wang, H.; Varga, K. et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat. Commun. 2021, 12, 114.

[23]

Zhang, Y. G.; Sun, S.; Liu, H. L.; Ren, Q. J.; Hao, W. T.; Xin, Q.; Xu, J. G.; Wang, H.; Zhang, X. D. Catalytically active gold clusters with atomic precision for noninvasive early intervention of neurotrauma. J. Nanobiotechnol. 2021, 19, 319.

[24]

Guo, J.; Yang, H. Y.; Liu, Y.; Liu, W.; Zhao, R. Y.; Li, H.; Long, W.; Xu, W. Q.; Guo, M. L.; Zhang, X. D. Atomically precise silver clusterzymes protect mice from radiation damages. J. Nanobiotechnol. 2021, 19, 377.

[25]

Guo, M. L.; Zhao, R. Y.; Liu, H. L.; Ma, H. Z.; Guo, J.; Yang, H. Y.; Liu, Y.; Zhang, X. N.; Huang, Y.; Zhang, G. et al. Ligand-modulated catalytic selectivity of Ag clusterzyme for relieving multiorgan injury via inhabiting acute oxidative stress. Bioconjugate Chem. 2021, 32, 2342–2352.

[26]

Ma, H. Z.; Zhang, X. N.; Liu, L.; Huang, Y.; Sun, S.; Chen, K.; Xin, Q.; Liu, P. F.; Yan, Y. X.; Wang, Y. L. et al. Bioactive NIR-II gold clusters for three-dimensional imaging and acute inflammation inhibition. Sci. Adv. 2023, 9, eadh7828.

[27]

Liu, T. F.; Xiao, B. W.; Xiang, F.; Tan, J. L.; Chen, Z.; Zhang, X. R.; Wu, C. Z.; Mao, Z. W.; Luo, G. X.; Chen, X. Y. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11, 2788.

[28]

Meng, F. C.; Peng, M.; Chen, Y. L.; Cai, X. B.; Huang, F.; Yang, L. N.; Liu, X.; Li, T.; Wen, X. D.; Wang, N. et al. Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Appl. Catal. B Environ. 2022, 301, 120826.

[29]

Chen, Y.; Zou, H.; Yan, B.; Wu, X. J.; Cao, W. W.; Qian, Y. H.; Zheng, L.; Yang, G. W. Atomically dispersed Cu nanozyme with intensive ascorbate peroxidase mimic activity capable of alleviating ROS-mediated oxidation damage. Adv. Sci. (Weinh.) 2022, 9, e2103977.

[30]

Liew, S. S.; Qin, X. F.; Zhou, J.; Li, L.; Huang, W.; Yao, S. Q. Smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angew. Chem., Int. Ed. 2021, 60, 2232–2256.

[31]

Jiao, X.; Zhang, Y. X.; Li, W. T.; Zhou, X. H.; Chu, W. X.; Li, Y. M.; Wang, Z. G.; Sun, X.; Xu, C.; Gan, Y. K. HIF-1α inhibition attenuates severity of Achilles tendinopathy by blocking NF-κB and MAPK pathways. Int. Immunopharmacol. 2022, 106, 108543.

[32]

Chen, X. Z.; Cao, X. K.; Zheng, D. S.; Li, C.; Chen, Y.; Kong, K. Y.; Xu, W. F.; Shi, B.; Chen, X. W.; Dai, F. R. et al. Ultrasmall PtAu2 nanoclusters activate endogenous anti-inflammatory and anti-oxidative systems to prevent inflammatory osteolysis. Theranostics 2023, 13, 1010–1027.

[33]

Stoll, C.; John, T.; Conrad, C.; Lohan, A.; Hondke, S.; Ertel, W.; Kaps, C.; Endres, M.; Sittinger, M.; Ringe, J. et al. Healing parameters in a rabbit partial tendon defect following tenocyte/biomaterial implantation. Biomaterials 2011, 32, 4806–4815.

[34]

El-Benna, J.; Hurtado-Nedelec, M.; Marzaioli, V.; Marie, J. C.; Gougerot-Pocidalo, M. A.; Dang, P. M. C. Priming of the neutrophil respiratory burst: Role in host defense and inflammation. Immunol. Rev. 2016, 273, 180–193.

[35]

Wang, Y. J.; He, G.; Tang, H.; Shi, Y. X.; Kang, X.; Lyu, J.; Zhu, M.; Zhou, M.; Yang, M. Y.; Mu, M. D. et al. Aspirin inhibits inflammation and scar formation in the injury tendon healing through regulating JNK/STAT-3 signalling pathway. Cell Prolif. 2019, 52, e12650.

[36]

Dionísio, P. A.; Amaral, J. D.; Rodrigues, C. M. P. Oxidative stress and regulated cell death in Parkinson's disease. Ageing Res. Rev. 2021, 67, 101263.

[37]

Hayes, J. D.; Dinkova-Kostova, A. T.; Tew, K. D. Oxidative stress in cancer. Cancer Cell 2020, 38, 167–197.

[38]

Liu, C.; Hu, F. Q.; Jiao, G. L.; Guo, Y.; Zhou, P.; Zhang, Y. N.; Zhang, Z.; Yi, J.; You, Y. G.; Li, Z. Z. et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury. J. Nanobiotechnol. 2022, 20, 65.

[39]

Nakano, H.; Nakajima, A.; Sakon-Komazawa, S.; Piao, J. H.; Xue, X.; Okumura, K. Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ. 2006, 13, 730–737.

Nano Research
Pages 5374-5389
Cite this article:
Chen X, Du Y, Huang Y, et al. Ultrasmall copper-based clusterzymes ameliorate Achilles tendinopathy by inhibiting acute oxidative stress. Nano Research, 2024, 17(6): 5374-5389. https://doi.org/10.1007/s12274-024-6426-7
Topics:

733

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 26 October 2023
Revised: 17 December 2023
Accepted: 17 December 2023
Published: 19 January 2024
© Tsinghua University Press 2024
Return