AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Eutectogel-based self-powered wearable sensor for health monitoring in harsh environments

Junpeng Wu1Xinru Teng1Lu Liu1Hongzhi Cui1( )Xiaoyi Li1,2( )
College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
Show Author Information

Graphical Abstract

Eutectogel-based triboelectric nanogenerator (TENG) demonstrates remarkable mass stability and sensitivity, opening up novel opportunities for the real-time monitoring of human health signals in challenging environments.

Abstract

Triboelectric nanogenerators (TENG) have emerged as a highly promising energy harvesting technology, attracting significant attention in recent years for their broad applications. Gel-based TENGs, with superior stretchability and sensitivity, have been widely reported as wearable sensors. However, the traditional hydrogel-based TENGs suffer from freezing at low temperatures and drying at high temperatures, resulting in malfunctions. In this study, we introduce an anti-freezing eutectogel, which uses a deep eutectic solvent (DES), to improve the stability and electrical conductivity of TENGs in harsh environmental conditions. The eutectogel-based TENG (E-TENG) produces an open-circuit voltage of 776 V, a short-circuit current of 1.54 µA, and a maximum peak power of 1.1 mW. Moreover, the E-TENG exhibits exceptional mechanical properties with an elongation at a break of 476% under tension. Importantly, it maintains impressive performances across a wide temperature range from −18 to 60 °C, with conductivities of 2.15 S/m at −10 °C and 1.75 S/m at −18 °C. Based on the excellent weight stability of the E-TENG sensor, motion sensing can be achieved in the air, and even underwater. Finally, the versatility of the E-TENG can serve as a wearable sensor, by integrating it with Bluetooth technology. The self-powered E-TENG can monitor various human motion signals in real-time and send the health signals directly to mobile phones. This research paves a new road for the applications of TENGs in harsh environments, offering wireless flexible sensors with real-time health signal monitoring capabilities.

Electronic Supplementary Material

Video
12274_2024_6425_MOESM2_ESM.mp4
12274_2024_6425_MOESM3_ESM.mp4
Download File(s)
12274_2024_6425_MOESM1_ESM.pdf (3.1 MB)

References

[1]

Fan, F. R.; Tian, Z. Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[2]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[3]

Yang, P. Y.; Zhou, L. L.; Gao, Y. K.; Xiao, J. F.; Liu, D.; Zhao, Z. H.; Qiao, W. Y.; Liu, J. Q.; Wang, Z. L.; Wang, J. Achieving high-performance triboelectric nanogenerator by DC pump strategy. Adv. Mater. Technol. 2023, 8, 2201957.

[4]

Guo, X. H.; He, J. W.; Zheng, Y.; Wu, J. P.; Pan, C. F.; Zi, Y. L.; Cui, H. Z.; Li, X. Y. High-performance triboelectric nanogenerator based on theoretical analysis and ferroelectric nanocomposites and its high-voltage applications. Nano Res. Energy 2023, 2, e9120074.

[5]

Li, X. Y.; Lau, T. H.; Guan, D.; Zi, Y. L. A universal method for quantitative analysis of triboelectric nanogenerators. J. Mater. Chem. A 2019, 7, 19485–19494.

[6]

Li, G.; Liu, G. L.; He, W. C.; Long, L.; Li, B. X.; Wang, Z.; Tang, Q.; Liu, W. L.; Hu, C. G. Miura folding based charge-excitation triboelectric nanogenerator for portable power supply. Nano Res. 2021, 14, 4204–4210.

[7]

Zheng, N.; Xue, J. H.; Jie, Y.; Cao, X.; Wang, Z. L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219.

[8]

Qi, C. X.; Yang, Z. Y.; Zhi, J. Y.; Zhang, R. C.; Wen, J.; Qin, Y. Enhancing the powering ability of triboelectric nanogenerator through output signal’s management strategies. Nano Res. 2023, 16, 11783–11800.

[9]

Gan, L. Y.; Xia, F.; Zhang, P. P.; Jiang, X. J.; Liu, Y. X.; Niu, S. M.; Hu, Y. F. Triboelectric nanogenerators with a constant inherent capacitance design. Nano Res. 2023, 16, 4077–4084.

[10]

Wang, Y. Q.; Huang, T.; Gao, Q.; Li, J. P.; Wen, J. M.; Wang, Z. L.; Cheng, T. H. High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Res. 2022, 15, 3239–3245.

[11]

Wang, W. J.; Sun, W. T.; Du, Y. F.; Zhao, W. B.; Liu, L. J.; Sun, Y.; Kong, D. J.; Xiang, H. F.; Wang, X. X.; Li, Z. et al. Triboelectric nanogenerators-based therapeutic electrical stimulation on skin: From fundamentals to advanced applications. ACS Nano 2023, 17, 9793–9825.

[12]

Pang, Y. K.; Fang, Y. H.; Su, J. J.; Wang, H. G.; Tan, Y. Q.; Cao, C. Y. Soft ball-based triboelectric-electromagnetic hybrid nanogenerators for wave energy harvesting. Adv. Mater. Technol. 2023, 8, 2201246.

[13]

Yu, Y.; Wang, X. X.; Xie, G. X.; Ma, J. Q.; Lv, T. Y.; Du, K. F.; Hu, H.; Zhang, J.; Li, Y. Q.; Long, Y. Z. et al. Preparation and piezoelectric catalytic performance of flexible inorganic Ba1− x Ca x TiO3 via electrospinning. J. Mater. Chem. A 2021, 9, 24695–24703.

[14]

Li, Y. M.; Chen, S. E.; Yan, H.; Jiang, H. W.; Luo, J. J.; Zhang, C.; Pang, Y. K.; Tan, Y. Q. Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing. Chem. Eng. J. 2023, 468, 143572.

[15]

Pang, Y. K.; Huang, Z. D.; Fang, Y. H.; Xu, X. C.; Cao, C. Y. Toward self-powered integrated smart packaging system-Desiccant-based triboelectric nanogenerators. Nano Energy 2023, 114, 108659.

[16]

Zhu, Z. Y.; Li, B.; Zhao, E.; Yu, M. Self-powered silicon PIN neutron detector based on triboelectric nanogenerator. Nano Energy 2022, 102, 107668.

[17]

Jiang, M.; Li, B.; Jia, W. Z.; Zhu, Z. Y. Predicting output performance of triboelectric nanogenerators using deep learning model. Nano Energy 2022, 93, 106830.

[18]

Dong, K.; Peng, X.; An, J.; Wang, A. C.; Luo, J. J.; Sun, B. Z.; Wang, J.; Wang, Z. L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 2868.

[19]

Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.

[20]

Dong, K.; Wang, Z. L. Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. J. Semicond. 2021, 42, 101601.

[21]

Wu, J. P.; Liang, W.; Song, W. Z.; Zhou, L. N.; Wang, X. X.; Ramakrishna, S.; Long, Y. Z. An acid and alkali-resistant triboelectric nanogenerator. Nanoscale 2020, 12, 23225–23233.

[22]

Li, X. Y.; Zhang, C. G.; Gao, Y. K.; Zhao, Z. H.; Hu, Y. X.; Yang, O.; Liu, L.; Zhou, L. L.; Wang, J.; Wang, Z. L. A highly efficient constant-voltage triboelectric nanogenerator. Energy Environ. Sci. 2022, 15, 1334–1345.

[23]

Wang, Z.; Tang, Q.; Shan, C. C.; Du, Y.; He, W. C.; Fu, S. K.; Li, G.; Liu, A. P.; Liu, W. L.; Hu, C. G. Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy Environ. Sci. 2021, 14, 6627–6637.

[24]

Zeng, Q. X.; Chen, A.; Zhang, X. F.; Luo, Y. L.; Tan, L. M.; Wang, X. A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs. Adv. Mater. 2023, 35, 2208139.

[25]

Zhang, Y.; Zeng, Q. X.; Wu, Y.; Wu, J.; Yuan, S. L.; Tan, D. J.; Hu, C. G.; Wang, X. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 2020, 12, 175.

[26]

Patnam, H.; Graham, S. A.; Manchi, P.; Paranjape, M. V.; Yu, J. S. Single-electrode triboelectric nanogenerators based on ionic conductive hydrogel for mechanical energy harvester and smart touch sensor applications. ACS Appl. Mater. Interfaces 2023, 15, 16768–16777.

[27]

Wang, Z.; Liu, Z. R.; Zhao, G. R.; Zhang, Z. C.; Zhao, X. Y.; Wan, X. Y.; Zhang, Y. L.; Wang, Z. L.; Li, L. L. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 2022, 16, 1661–1670.

[28]

Lu, Y.; Jiang, L. L.; Yu, Y.; Wang, D. H.; Sun, W. T.; Liu, Y.; Yu, J.; Zhang, J.; Wang, K.; Hu, H. et al. Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nat. Commun. 2022, 13, 5316.

[29]

Li, G. X.; Li, L. W.; Zhang, P. P.; Chang, C. Y.; Xu, F.; Pu, X. Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing. RSC Adv. 2021, 11, 17437–17444.

[30]

Xue, K.; Shao, C. Y.; Yu, J.; Zhang, H. M.; Wang, B.; Ren, W. F.; Cheng, Y. B.; Jin, Z. X.; Zhang, F.; Wang, Z. K. et al. Initiatorless solar photopolymerization of versatile and sustainable eutectogels as multi-response and self-powered sensors for human-computer interface. Adv. Funct. Mater. 2023, 33, 2305879.

[31]
Zhang, H. M.; Xue, K.; Xu, X. H.; Wang, X. H.; Wang, B.; Shao, C. Y.; Sun, R. C. Green and low-cost alkali-polyphenol synergetic self-catalysis system access to fast gelation of self-healable and self-adhesive conductive hydrogels for self-powered triboelectric nanogenerators. Small, in press, https://doi.org/10.1002/smll.202305502.
[32]

Feng, Y. F.; Yu, J.; Sun, D.; Ren, W. F.; Shao, C. Y.; Sun, R. C. Solvent-induced in- situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chem. Eng. J. 2022, 433, 133202.

[33]

Wang, X. X.; Yu, G. F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y. Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704.

[34]

Du, Y. Z.; Wang, X. D.; Dai, X. Y.; Lu, W. X.; Tang, Y. S.; Kong, J. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2T x MXene for self-powered wearable electronics. J. Mater. Sci. Technol. 2022, 100, 1–11.

[35]

Wu, M.; Wang, X.; Xia, Y. F.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Guo, W. Y.; Li, Q. Q.; Yan, Z. G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967.

[36]

Zheng, Y.; Liu, T.; Wu, J. P.; Xu, T. T.; Wang, X. D.; Han, X.; Cui, H. Z.; Xu, X. F.; Pan, C. F.; Li, X. Y. Energy conversion analysis of multilayered triboelectric nanogenerators for synergistic rain and solar energy harvesting. Adv. Mater. 2022, 34, 2202238.

[37]

Liu, J. J.; Qu, S. X.; Suo, Z. G.; Yang, W. Functional hydrogel coatings. Natl. Sci. Rev. 2021, 8, nwaa254.

[38]

Luo, X. X.; Zhu, L. P.; Wang, Y. C.; Li, J. Y.; Nie, J. J.; Wang, Z. L. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 2021, 31, 2104928.

[39]

Shuai, L. Y. Z.; Guo, Z. H.; Zhang, P. P.; Wan, J. M.; Pu, X.; Wang, Z. L. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 2020, 78, 105389.

[40]

Du, S.; Suo, H. N.; Xie, G.; Lyu, Q.; Mo, M.; Xie, Z. J.; Zhou, N. Y.; Zhang, L. B.; Tao, J.; Zhu, J. T. Self-powered and photothermal electronic skin patches for accelerating wound healing. Nano Energy 2022, 93, 106906.

[41]

Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. An intrinsically self-healing NiCo|Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem., Int. Ed. 2018, 57, 9810–9813.

[42]

Wang, Q. H.; Pan, X. F.; Lin, C. M.; Lin, D. Z.; Ni, Y. H.; Chen, L. H.; Huang, L. L.; Cao, S. L.; Ma, X. J. Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT: Sulfonated lignin as conductive materials. Chem. Eng. J. 2019, 370, 1039–1047.

[43]

Ge, W. J.; Cao, S.; Yang, Y.; Rojas, O. J.; Wang, X. H. Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions. Chem. Eng. J. 2021, 408, 127306.

[44]

Kim, Y.; Lee, D.; Seong, J.; Bak, B.; Choi, U. H.; Kim, J. Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy 2021, 84, 105925.

[45]

Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y. Q.; Chang, Q.; Jiang, J. Z.; Cai, J.; Wang, Q.; Luo, G. X.; Xing, M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 2017, 29, 1700533.

[46]

Yuk, H.; Wu, J. J.; Zhao, X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935–952.

[47]

Bhatia, D.; Jo, S. H.; Ryu, Y.; Kim, Y.; Kim, D. H.; Park, H. S. Wearable triboelectric nanogenerator based exercise system for upper limb rehabilitation post neurological injuries. Nano Energy 2021, 80, 105508.

[48]

Liu, W. L.; Wang, Z.; Wang, G.; Zeng, Q. X.; He, W. C.; Liu, L. Y.; Wang, X.; Xi, Y.; Guo, H. Y.; Hu, C. G. et al. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat. Commun. 2020, 11, 1883.

[49]

Feng, Y. F.; Yu, J.; Sun, D.; Dang, C.; Ren, W. F.; Shao, C. Y.; Sun, R. C. Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 2022, 98, 107284.

[50]

Lin, S. Q.; Xu, L.; Xu, C.; Chen, X. Y.; Wang, A. C.; Zhang, B. B.; Lin, P.; Yang, Y.; Zhao, H. B.; Wang, Z. L. Electron transfer in nanoscale contact electrification: Effect of temperature in the metal-dielectric case. Adv. Mater. 2019, 31, 1808197.

Nano Research
Pages 5559-5568
Cite this article:
Wu J, Teng X, Liu L, et al. Eutectogel-based self-powered wearable sensor for health monitoring in harsh environments. Nano Research, 2024, 17(6): 5559-5568. https://doi.org/10.1007/s12274-024-6425-8
Topics:

808

Views

13

Crossref

14

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 17 October 2023
Revised: 07 December 2023
Accepted: 17 December 2023
Published: 15 January 2024
© Tsinghua University Press 2024
Return