Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Triboelectric nanogenerators (TENG) have emerged as a highly promising energy harvesting technology, attracting significant attention in recent years for their broad applications. Gel-based TENGs, with superior stretchability and sensitivity, have been widely reported as wearable sensors. However, the traditional hydrogel-based TENGs suffer from freezing at low temperatures and drying at high temperatures, resulting in malfunctions. In this study, we introduce an anti-freezing eutectogel, which uses a deep eutectic solvent (DES), to improve the stability and electrical conductivity of TENGs in harsh environmental conditions. The eutectogel-based TENG (E-TENG) produces an open-circuit voltage of 776 V, a short-circuit current of 1.54 µA, and a maximum peak power of 1.1 mW. Moreover, the E-TENG exhibits exceptional mechanical properties with an elongation at a break of 476% under tension. Importantly, it maintains impressive performances across a wide temperature range from −18 to 60 °C, with conductivities of 2.15 S/m at −10 °C and 1.75 S/m at −18 °C. Based on the excellent weight stability of the E-TENG sensor, motion sensing can be achieved in the air, and even underwater. Finally, the versatility of the E-TENG can serve as a wearable sensor, by integrating it with Bluetooth technology. The self-powered E-TENG can monitor various human motion signals in real-time and send the health signals directly to mobile phones. This research paves a new road for the applications of TENGs in harsh environments, offering wireless flexible sensors with real-time health signal monitoring capabilities.
Fan, F. R.; Tian, Z. Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.
Yang, P. Y.; Zhou, L. L.; Gao, Y. K.; Xiao, J. F.; Liu, D.; Zhao, Z. H.; Qiao, W. Y.; Liu, J. Q.; Wang, Z. L.; Wang, J. Achieving high-performance triboelectric nanogenerator by DC pump strategy. Adv. Mater. Technol. 2023, 8, 2201957.
Guo, X. H.; He, J. W.; Zheng, Y.; Wu, J. P.; Pan, C. F.; Zi, Y. L.; Cui, H. Z.; Li, X. Y. High-performance triboelectric nanogenerator based on theoretical analysis and ferroelectric nanocomposites and its high-voltage applications. Nano Res. Energy 2023, 2, e9120074.
Li, X. Y.; Lau, T. H.; Guan, D.; Zi, Y. L. A universal method for quantitative analysis of triboelectric nanogenerators. J. Mater. Chem. A 2019, 7, 19485–19494.
Li, G.; Liu, G. L.; He, W. C.; Long, L.; Li, B. X.; Wang, Z.; Tang, Q.; Liu, W. L.; Hu, C. G. Miura folding based charge-excitation triboelectric nanogenerator for portable power supply. Nano Res. 2021, 14, 4204–4210.
Zheng, N.; Xue, J. H.; Jie, Y.; Cao, X.; Wang, Z. L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219.
Qi, C. X.; Yang, Z. Y.; Zhi, J. Y.; Zhang, R. C.; Wen, J.; Qin, Y. Enhancing the powering ability of triboelectric nanogenerator through output signal’s management strategies. Nano Res. 2023, 16, 11783–11800.
Gan, L. Y.; Xia, F.; Zhang, P. P.; Jiang, X. J.; Liu, Y. X.; Niu, S. M.; Hu, Y. F. Triboelectric nanogenerators with a constant inherent capacitance design. Nano Res. 2023, 16, 4077–4084.
Wang, Y. Q.; Huang, T.; Gao, Q.; Li, J. P.; Wen, J. M.; Wang, Z. L.; Cheng, T. H. High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Res. 2022, 15, 3239–3245.
Wang, W. J.; Sun, W. T.; Du, Y. F.; Zhao, W. B.; Liu, L. J.; Sun, Y.; Kong, D. J.; Xiang, H. F.; Wang, X. X.; Li, Z. et al. Triboelectric nanogenerators-based therapeutic electrical stimulation on skin: From fundamentals to advanced applications. ACS Nano 2023, 17, 9793–9825.
Pang, Y. K.; Fang, Y. H.; Su, J. J.; Wang, H. G.; Tan, Y. Q.; Cao, C. Y. Soft ball-based triboelectric-electromagnetic hybrid nanogenerators for wave energy harvesting. Adv. Mater. Technol. 2023, 8, 2201246.
Yu, Y.; Wang, X. X.; Xie, G. X.; Ma, J. Q.; Lv, T. Y.; Du, K. F.; Hu, H.; Zhang, J.; Li, Y. Q.; Long, Y. Z. et al. Preparation and piezoelectric catalytic performance of flexible inorganic Ba1− x Ca x TiO3 via electrospinning. J. Mater. Chem. A 2021, 9, 24695–24703.
Li, Y. M.; Chen, S. E.; Yan, H.; Jiang, H. W.; Luo, J. J.; Zhang, C.; Pang, Y. K.; Tan, Y. Q. Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing. Chem. Eng. J. 2023, 468, 143572.
Pang, Y. K.; Huang, Z. D.; Fang, Y. H.; Xu, X. C.; Cao, C. Y. Toward self-powered integrated smart packaging system-Desiccant-based triboelectric nanogenerators. Nano Energy 2023, 114, 108659.
Zhu, Z. Y.; Li, B.; Zhao, E.; Yu, M. Self-powered silicon PIN neutron detector based on triboelectric nanogenerator. Nano Energy 2022, 102, 107668.
Jiang, M.; Li, B.; Jia, W. Z.; Zhu, Z. Y. Predicting output performance of triboelectric nanogenerators using deep learning model. Nano Energy 2022, 93, 106830.
Dong, K.; Peng, X.; An, J.; Wang, A. C.; Luo, J. J.; Sun, B. Z.; Wang, J.; Wang, Z. L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 2868.
Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.
Dong, K.; Wang, Z. L. Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. J. Semicond. 2021, 42, 101601.
Wu, J. P.; Liang, W.; Song, W. Z.; Zhou, L. N.; Wang, X. X.; Ramakrishna, S.; Long, Y. Z. An acid and alkali-resistant triboelectric nanogenerator. Nanoscale 2020, 12, 23225–23233.
Li, X. Y.; Zhang, C. G.; Gao, Y. K.; Zhao, Z. H.; Hu, Y. X.; Yang, O.; Liu, L.; Zhou, L. L.; Wang, J.; Wang, Z. L. A highly efficient constant-voltage triboelectric nanogenerator. Energy Environ. Sci. 2022, 15, 1334–1345.
Wang, Z.; Tang, Q.; Shan, C. C.; Du, Y.; He, W. C.; Fu, S. K.; Li, G.; Liu, A. P.; Liu, W. L.; Hu, C. G. Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy Environ. Sci. 2021, 14, 6627–6637.
Zeng, Q. X.; Chen, A.; Zhang, X. F.; Luo, Y. L.; Tan, L. M.; Wang, X. A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs. Adv. Mater. 2023, 35, 2208139.
Zhang, Y.; Zeng, Q. X.; Wu, Y.; Wu, J.; Yuan, S. L.; Tan, D. J.; Hu, C. G.; Wang, X. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 2020, 12, 175.
Patnam, H.; Graham, S. A.; Manchi, P.; Paranjape, M. V.; Yu, J. S. Single-electrode triboelectric nanogenerators based on ionic conductive hydrogel for mechanical energy harvester and smart touch sensor applications. ACS Appl. Mater. Interfaces 2023, 15, 16768–16777.
Wang, Z.; Liu, Z. R.; Zhao, G. R.; Zhang, Z. C.; Zhao, X. Y.; Wan, X. Y.; Zhang, Y. L.; Wang, Z. L.; Li, L. L. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 2022, 16, 1661–1670.
Lu, Y.; Jiang, L. L.; Yu, Y.; Wang, D. H.; Sun, W. T.; Liu, Y.; Yu, J.; Zhang, J.; Wang, K.; Hu, H. et al. Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nat. Commun. 2022, 13, 5316.
Li, G. X.; Li, L. W.; Zhang, P. P.; Chang, C. Y.; Xu, F.; Pu, X. Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing. RSC Adv. 2021, 11, 17437–17444.
Xue, K.; Shao, C. Y.; Yu, J.; Zhang, H. M.; Wang, B.; Ren, W. F.; Cheng, Y. B.; Jin, Z. X.; Zhang, F.; Wang, Z. K. et al. Initiatorless solar photopolymerization of versatile and sustainable eutectogels as multi-response and self-powered sensors for human-computer interface. Adv. Funct. Mater. 2023, 33, 2305879.
Feng, Y. F.; Yu, J.; Sun, D.; Ren, W. F.; Shao, C. Y.; Sun, R. C. Solvent-induced in- situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chem. Eng. J. 2022, 433, 133202.
Wang, X. X.; Yu, G. F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y. Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704.
Du, Y. Z.; Wang, X. D.; Dai, X. Y.; Lu, W. X.; Tang, Y. S.; Kong, J. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2T x MXene for self-powered wearable electronics. J. Mater. Sci. Technol. 2022, 100, 1–11.
Wu, M.; Wang, X.; Xia, Y. F.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Guo, W. Y.; Li, Q. Q.; Yan, Z. G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967.
Zheng, Y.; Liu, T.; Wu, J. P.; Xu, T. T.; Wang, X. D.; Han, X.; Cui, H. Z.; Xu, X. F.; Pan, C. F.; Li, X. Y. Energy conversion analysis of multilayered triboelectric nanogenerators for synergistic rain and solar energy harvesting. Adv. Mater. 2022, 34, 2202238.
Liu, J. J.; Qu, S. X.; Suo, Z. G.; Yang, W. Functional hydrogel coatings. Natl. Sci. Rev. 2021, 8, nwaa254.
Luo, X. X.; Zhu, L. P.; Wang, Y. C.; Li, J. Y.; Nie, J. J.; Wang, Z. L. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 2021, 31, 2104928.
Shuai, L. Y. Z.; Guo, Z. H.; Zhang, P. P.; Wan, J. M.; Pu, X.; Wang, Z. L. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 2020, 78, 105389.
Du, S.; Suo, H. N.; Xie, G.; Lyu, Q.; Mo, M.; Xie, Z. J.; Zhou, N. Y.; Zhang, L. B.; Tao, J.; Zhu, J. T. Self-powered and photothermal electronic skin patches for accelerating wound healing. Nano Energy 2022, 93, 106906.
Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. An intrinsically self-healing NiCo|Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem., Int. Ed. 2018, 57, 9810–9813.
Wang, Q. H.; Pan, X. F.; Lin, C. M.; Lin, D. Z.; Ni, Y. H.; Chen, L. H.; Huang, L. L.; Cao, S. L.; Ma, X. J. Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT: Sulfonated lignin as conductive materials. Chem. Eng. J. 2019, 370, 1039–1047.
Ge, W. J.; Cao, S.; Yang, Y.; Rojas, O. J.; Wang, X. H. Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions. Chem. Eng. J. 2021, 408, 127306.
Kim, Y.; Lee, D.; Seong, J.; Bak, B.; Choi, U. H.; Kim, J. Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy 2021, 84, 105925.
Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y. Q.; Chang, Q.; Jiang, J. Z.; Cai, J.; Wang, Q.; Luo, G. X.; Xing, M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 2017, 29, 1700533.
Yuk, H.; Wu, J. J.; Zhao, X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935–952.
Bhatia, D.; Jo, S. H.; Ryu, Y.; Kim, Y.; Kim, D. H.; Park, H. S. Wearable triboelectric nanogenerator based exercise system for upper limb rehabilitation post neurological injuries. Nano Energy 2021, 80, 105508.
Liu, W. L.; Wang, Z.; Wang, G.; Zeng, Q. X.; He, W. C.; Liu, L. Y.; Wang, X.; Xi, Y.; Guo, H. Y.; Hu, C. G. et al. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat. Commun. 2020, 11, 1883.
Feng, Y. F.; Yu, J.; Sun, D.; Dang, C.; Ren, W. F.; Shao, C. Y.; Sun, R. C. Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 2022, 98, 107284.
Lin, S. Q.; Xu, L.; Xu, C.; Chen, X. Y.; Wang, A. C.; Zhang, B. B.; Lin, P.; Yang, Y.; Zhao, H. B.; Wang, Z. L. Electron transfer in nanoscale contact electrification: Effect of temperature in the metal-dielectric case. Adv. Mater. 2019, 31, 1808197.