Journal Home > Volume 17 , Issue 6

In addition to their many well-known advantages (e.g., ultra-high porosity, good pore size distribution, easy functionalization, and structural tolerability), metal-organic frameworks (MOFs) are a new class of advanced functional materials. However, their backbones are highly susceptible to deformation after exposure to acidic or alkaline conditions. As a result of lithium-ion batteries embedding or detaching directly from MOFs, they irreversibly collapse. As a result, they fail to maintain their electrochemical performance. These factors have hindered the development of MOFs as direct electrode materials, making the design of MOF materials with controlled morphology and stable dimensions a new challenge. In this study, we adopted a versatile and effective method to synthesize a novel MOF material (NiCo-BP (BP = BTC/phen and BTC = 1,3,5-benzenetricarboxylic acid)) using the rigid ligands 1,10-phenanthroline and homobenzotrizoic acid, and the emergence of the Ni–O/N and Co–O/N coordination layers was observed by extended X-ray absorption fine structure (EXAFS) tests, indicating that Ni and Co were coordinated with heterocyclic N-given atoms to form a stable p–π conjugated structure. Meanwhile, the metal-ion is attached to the carboxylic acid ligand on the other side, making the metal-organic skeleton complete and robust. The nanosphere structure of NiCo-BP (~ 400 nm) allows for full exposure and utilisation of the active sites, especially the Ni, Co, and phenanthroline units, and exhibit impressively high specific capacity and cycling stability. At a high current density of 1.0 A·g−1, a high discharge specific capacity of 631.6 mAh·g−1 was obtained after 1000 cycles. The co-participation of two organic ligands in the coordination is in accordance with the theory of soft and hard acids and bases, which contributes to the ability of the material to maintain a high capacity in cycling as well as its cyclic stability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ni/Co bimetallic organic frameworks nanospheres for high-performance electrochemical energy storage

Show Author's information Jianru Guan1Minlu Liu1Limin Zhu1( )Jiamei Wang1Qing Han1Xiaoxia Yang2Weibo Hua2( )Lingling Xie3( )Xiaoyu Cao1( )
School of Chemistry and Chemical Engineering, Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Henan University of Technology, Zhengzhou 450001, China
School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract

In addition to their many well-known advantages (e.g., ultra-high porosity, good pore size distribution, easy functionalization, and structural tolerability), metal-organic frameworks (MOFs) are a new class of advanced functional materials. However, their backbones are highly susceptible to deformation after exposure to acidic or alkaline conditions. As a result of lithium-ion batteries embedding or detaching directly from MOFs, they irreversibly collapse. As a result, they fail to maintain their electrochemical performance. These factors have hindered the development of MOFs as direct electrode materials, making the design of MOF materials with controlled morphology and stable dimensions a new challenge. In this study, we adopted a versatile and effective method to synthesize a novel MOF material (NiCo-BP (BP = BTC/phen and BTC = 1,3,5-benzenetricarboxylic acid)) using the rigid ligands 1,10-phenanthroline and homobenzotrizoic acid, and the emergence of the Ni–O/N and Co–O/N coordination layers was observed by extended X-ray absorption fine structure (EXAFS) tests, indicating that Ni and Co were coordinated with heterocyclic N-given atoms to form a stable p–π conjugated structure. Meanwhile, the metal-ion is attached to the carboxylic acid ligand on the other side, making the metal-organic skeleton complete and robust. The nanosphere structure of NiCo-BP (~ 400 nm) allows for full exposure and utilisation of the active sites, especially the Ni, Co, and phenanthroline units, and exhibit impressively high specific capacity and cycling stability. At a high current density of 1.0 A·g−1, a high discharge specific capacity of 631.6 mAh·g−1 was obtained after 1000 cycles. The co-participation of two organic ligands in the coordination is in accordance with the theory of soft and hard acids and bases, which contributes to the ability of the material to maintain a high capacity in cycling as well as its cyclic stability.

Keywords: lithium-ion batteries, electrochemical energy storage, metal organic frame, dual ligand, hard-soft-acid-base

References(48)

[1]

Shrivastav, V.; Sundriyal, S.; Goel, P.; Kaur, H.; Tuteja, S. K.; Vikrant, K.; Kim, K. H.; Tiwari, U. K.; Deep, A. Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coord. Chem. Rev. 2019, 393, 48–78.

[2]

Zhou, T.; Xie, L. L.; Niu, Y.; Xiao, H. R.; Li, Y. J.; Han, Q.; Qiu, X. J.; Yang, X. L.; Wu, X. Y.; Zhu, L. M. et al. New insights on (V10O28)6−-based electrode materials for energy storage: A brief review. Rare Met. 2023, 42, 1431–1445.

[3]

Zhou, T.; Zhu, L. M.; Xie, L. L.; Han, Q.; Yang, X. L.; Chen, L.; Wang, G. K.; Cao, X. Y. Cathode materials for aqueous zinc-ion batteries: A mini review. J. Colloid Interface Sci. 2022, 605, 828–850.

[4]

Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

[5]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[6]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561

[7]

Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res. 2023, 16, 4438–4467.

[8]

Meng, Z. Y.; Qiu, Z. M.; Shi, Y. X.; Wang, S. X.; Zhang, G. X.; Pi, Y. C.; Pang, H. Micro/nano metal-organic frameworks meet energy chemistry: A review of materials synthesis and applications. eScience 2023, 3, 100092.

[9]

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

[10]

Anh Tran, V.; Huu Do, H.; Duy Cam Ha, T.; Hyun Ahn, S.; Kim, M. G.; Young Kim, S.; Lee, S. W. Metal-organic framework for lithium and sodium-ion batteries: Progress and perspectivez. Fuel 2022, 319, 123856.

[11]

Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

[12]

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

[13]

Marshall, C. R.; Staudhammer, S. A.; Brozek, C. K. Size control over metal-organic framework porous nanocrystals. Chem. Sci. 2019, 10, 9396–9408.

[14]

Masoomi, M. Y.; Morsali, A.; Dhakshinamoorthy, A.; Garcia, H. Mixed-metal MOFs: Unique opportunities in metal-organic framework (MOF) functionality and design. Angew. Chem., Int. Ed. 2019, 58, 15188–15205.

[15]

Wang, J. M.; Imaz, I.; Maspoch, D. Metal-organic frameworks: Why make them small. Small Struct. 2022, 3, 2100126.

[16]

Li, C.; Yang, Q.; Shen, M.; Ma, J. Y.; Hu, B. W. The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy. Energy Storage Mater. 2018, 14, 82–89.

[17]

He, H. M.; Zhu, Q. Q.; Li, C. P.; Du, M. Design of a highly-stable pillar-layer zinc(II) porous framework for rapid, reversible, and multi-responsive luminescent sensor in water. Cryst. Growth Des. 2019, 19, 694–703.

[18]

Wu, M. X.; Wang, Y.; Zhou, G. H.; Liu, X. M. Core–shell MOFs@MOFs: Diverse designability and enhanced selectivity. ACS Appl. Mater. Interfaces 2020, 12, 54285–54305.

[19]

Zheng, S. S.; Sun, Y.; Xue, H. G.; Braunstein, P.; Huang, W.; Pang, H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. Natl. Sci. Rev. 2022, 9, nwab197.

[20]

Li, X. J.; Ma, W.; Li, H. M.; Zhang, Q. H.; Liu, H. W. Sulfur-functionalized metal-organic frameworks: Synthesis and applications as advanced adsorbents. Coord. Chem. Rev. 2020, 408, 213191.

[21]

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

[22]

Demessence, A.; D’Alessandro, D. M.; Foo, M. L.; Long, J. R. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 2009, 131, 8784–8786.

[23]

Xue, H.; Huang, X. S.; Yin, Q.; Hu, X. J.; Zheng, H. Q.; Huang, G.; Liu, T. F. Bimetallic cationic metal-organic frameworks for selective dye adsorption and effective Cr2O72− removal. Cryst. Growth Des. 2020, 20, 4861–4866.

[24]

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882

[25]

Antony, R. P.; Satpati, A. K.; Bhattacharyya, K.; Jagatap, B. N. MOF derived nonstoichiometric Ni x Co3− x O4− y nanocage for superior electrocatalytic oxygen evolution. Adv. Mater. Interfaces 2016, 3, 1600632.

[26]

Zhou, T.; Zhu, L. M.; Xie, L. L.; Han, Q.; Yang, X. L.; Cao, X. Y.; Ma, J. M. New insight on K2Zn2V10O28 as an advanced cathode for rechargeable aqueous zinc-ion batteries. Small 2022, 18, 2107102.

[27]

Xu, N. N.; Han, Q.; Zhu, L. M.; Xie, L. L.; Xu, J.; Zhang, W. F.; Yang, X. L.; Cao, X. Y. Design and synthesis of heterometallic Ni-Co organic frameworks as anode materials for high-performance lithium storage. J. Electrochem. Soc. 2022, 169, 030526.

[28]

Ambrose, B.; Madhu, R.; Kannan, A.; Senthilvel, S.; Kathiresan, M.; Kundu, S. Impact of ligand in bimetallic Co, Ni-metal-organic framework towards oxygen evolution reaction. Electrochim. Acta 2023, 439, 141714.

[29]

Wang, S. X.; Hu, W. H.; Ru, Y.; Shi, Y. X.; Guo, X. T.; Sun, Y. Y.; Pang, H. Synthesis strategies and electrochemical research progress of nano/microscale metal-organic frameworks. Small Sci. 2022, 2, 2200042.

[30]

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie. F.; Jiang, S.; Zhu, Y. F. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

[31]

Li, L. J.; Zhao, J. C.; Zhu, Y. Q.; Pan, X. F.; Wang, H. X.; Xu, J. L. Bimetallic Ni/Co-ZIF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance. Electrochim. Acta 2020, 353, 136532.

[32]

Zhang, X.; Liu, S. W.; Zang, Y. P.; Liu, R. R.; Liu, G. Q.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Co/Co9S8@S,N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 2016, 30, 93–102.

[33]

Li, Z. Y.; Sun, R.; Qin, Z. X.; Liu, X. L.; Wang, C. H.; Lu, S. J.; Zhang, Y. F.; Fan, H. S. Coupling of ReS2 nanosheet arrays with hollow NiCoS4 nanocubes enables ultrafast Na+ diffusion kinetics and super Na+ storage of a NiCoS4@ReS2 heterostructure. Mater. Chem. Front. 2021, 5, 7540–7547.

[34]

Ye, C.; Jiao, Y.; Chao, D. L.; Ling, T.; Shan, J. Q.; Zhang, B. W.; Gu, Q. F.; Davey, K.; Wang, H. H.; Qiao, S. Z. Electron-state confinement of polysulfides for highly stable sodium-sulfur batteries. Adv. Mater. 2020, 32, 1907557.

[35]

Zhang, W. F.; Wang, L.; Ding, G. C.; Yang, Y. J.; Yang, G.; Xu, J.; Xu, N. N.; Xie, L. L.; Han, Q.; Zhu, L. M. et al. Bimetallic CoNiSe2/C nanosphere anodes derived from Ni-Co-metal-organic framework precursor towards higher lithium storage capacity. Chin. Chem. Lett. 2023, 34, 107328.

[36]

Xu, J.; Xie, L. L.; Niu, Y.; Chen, H. H.; Zhang, Y. H.; Jiang, Y. B.; Han, Q.; Qiu, X. J.; Miao, Y. X.; Zhu, L. M. et al. Nitrogen-doped carbon decorated 3D NiCoSe2 micro-flowers as high-performance anode materials for lithium-ion batteries. Phys. Chem. Chem. Phys. 2023, 25, 11530–11544.

[37]

Zhang, S. H.; Sun, N.; Jiang, M. C.; Soomro, R. A.; Xu, B. Trash to treasure: Sulfonation-assisted transformation of waste masks into high-performance carbon anode for sodium-ion batteries. Carbon 2023, 209, 118034.

[38]

Xie, L. L.; Zhang, W. F.; Chen, X. Z.; Shan, R. H.; Han, Q.; Qiu, X. J.; Oli, N.; Florez Gomez, J. F.; Zhu, L. M.; Wu, X. Y. et al. Bimetallic cobalt-nickel selenide nanocubes embedded in a nitrogen-doped carbon matrix as an excellent Li-ion battery anode. ACS Appl. Mater. Interfaces 2023, 15, 25536–25549.

[39]

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

[40]

Shen, Z.; Cao, L.; Rahn, C. D.; Wang, C. Y. Least squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement. J. Electrochem. Soc. 2013, 160, A1842–A1846.

[41]

Liu, X. Z.; Wang, Y. H.; Yang, Y. J.; Lv, W.; Lian, G.; Golberg, D.; Wang, X.; Zhao, X.; Ding, Y. A MoS2/carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano Energy 2020, 70, 104550.

[42]

Liang, Z. Y.; Tu, H. Y.; Kong, Z.; Yao, X. G.; Xu, D. Q.; Liu, S. F.; Shao, Y. L.; Wu, Y. Z.; Hao, X. P. Urchin like inverse spinel manganese doped NiCo2O4 microspheres as high performances anode for lithium-ion batteries. J. Colloid Interface Sci. 2022, 616, 509–519.

[43]

Song, Y.; Meng, Y.; Wang, P.; Jiang, L.; Wu, Z. Y.; Jiang, Y. C.; Hu, L. F. Epitaxial growth of NiCo2S4/Co9S8@graphene heterogenous nanocomposites with high-rate lithium storage performance. J. Alloys Compd. 2018, 747, 926–933.

[44]

Wang, L.; Wang, Z. H.; Xie, L. L.; Zhu, L. M.; Cao, X. Y. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 16619–16628.

[45]

Chu, X. Y.; Meng, F. L.; Deng, T.; Lu, Y.; Bondarchuk, O.; Sui, M. L.; Feng, M.; Li, H. B.; Zhang, W. Mechanistic insight into bimetallic CoNi-MOF arrays with enhanced performance for supercapacitors. Nanoscale 2020, 12, 5669–5677.

[46]

Wang, L.; Wang, Z. H.; Xie, L. L.; Zhu, L. M.; Cao, X. Y. An enabling strategy for ultra-fast lithium storage derived from micro-flower-structured NiX (X = O, S, Se). Electrochim. Acta 2020, 343, 136138.

[47]

Zuo, X. T.; Song, Y.; Zhen, M. M. Carbon-coated NiCo2S4 multi-shelled hollow microspheres with porous structures for high rate lithium ion battery applications. Appl. Surf. Sci. 2020, 500, 144000.

[48]

Ding, J. G.; Xu, H.; Chen, X. B. Facile hydrothermal synthesis of ternary Ni-Co-Se/carbon nanotube nanocomposites as advanced electrodes for lithium storage. RSC Adv. 2018, 8, 28710–28715.

File
12274_2024_6424_MOESM1_ESM.pdf (570.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 October 2023
Revised: 11 December 2023
Accepted: 17 December 2023
Published: 13 January 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 52071132, 52261135632, U21A20284, and 52371237), Program for Innovative Team (in Science and Technology) in University of Henan Province, China (No. 24IRTSTHN006), Natural Science Foundation of Henan, China (Nos. 232300421080 and 222300420138), Science and Technology Project of Henan Province, China (Nos. 232102241038 and 232102241004), Key Scientific Research Programs in Universities of Henan Province, China–Special Projects for Basic Research (No. 23ZX008), and Innovative Funds Plan of Henan University of Technology, China (No. 2020ZKCJ04).

Return