Journal Home > Volume 17 , Issue 6

In this study, a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen (B,N) was successfully synthesized. By precisely controlling the carbonization temperature of a binary mixed ionic liquid, we selectively modified the doping site structure, ultimately constructing a B,N co-doped frustrated Lewis acid-base pair catalyst. This catalyst exhibited remarkable catalytic activity, selectivity, and stability in the dehydrochlorination reaction of 1,1,2-trichloroethane (TCE). Detailed characterization and theoretical calculations revealed that the primary active center of this catalyst was the BN3 configuration. Compared to conventional graphitic N structures, the BN3 structure had a higher p-band center, ensuring superior adsorption and activation capabilities for TCE during the reaction. Within the BN3 site, three negatively charged nitrogen atoms acted as Lewis bases, while positively charged boron atoms acted as Lewis acids. This synergistic interaction facilitated the specific dissociation of chlorine and hydrogen atoms from TCE, significantly enhancing the 1,1-dichloroethene selectivity. Through this research, we not only explored the active site structure and catalytic mechanism of B,N co-doped catalysts in depth but also provided an efficient, selective, and stable catalyst for the dehydrochlorination of TCE, contributing significantly to the development of non-metallic catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly efficient catalyst for 1,1,2-trichloroethane dehydrochlorination via BN3 frustrated Lewis acid-base pairs

Show Author's information Yuxue Yue1,2Fangmin Zuo1Bolin Wang1( )Xiaoling Xian3Jun Tang4Haifeng Zhang1Zilong Zhang1Qingping Ke4( )Wei Chen3( )
School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
Industrial Catalysis Institute of Zhejiang University of Technology, Hangzhou 310014, China
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China

Abstract

In this study, a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen (B,N) was successfully synthesized. By precisely controlling the carbonization temperature of a binary mixed ionic liquid, we selectively modified the doping site structure, ultimately constructing a B,N co-doped frustrated Lewis acid-base pair catalyst. This catalyst exhibited remarkable catalytic activity, selectivity, and stability in the dehydrochlorination reaction of 1,1,2-trichloroethane (TCE). Detailed characterization and theoretical calculations revealed that the primary active center of this catalyst was the BN3 configuration. Compared to conventional graphitic N structures, the BN3 structure had a higher p-band center, ensuring superior adsorption and activation capabilities for TCE during the reaction. Within the BN3 site, three negatively charged nitrogen atoms acted as Lewis bases, while positively charged boron atoms acted as Lewis acids. This synergistic interaction facilitated the specific dissociation of chlorine and hydrogen atoms from TCE, significantly enhancing the 1,1-dichloroethene selectivity. Through this research, we not only explored the active site structure and catalytic mechanism of B,N co-doped catalysts in depth but also provided an efficient, selective, and stable catalyst for the dehydrochlorination of TCE, contributing significantly to the development of non-metallic catalysts.

Keywords: catalytic mechanism, B,N co-doped sites, dehydrochlorination, frustrated Lewis acid-base pairs

References(45)

[1]

Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312.

[2]

Xu, J. M.; Zhao, X. C.; Wang, A. Q.; Zhang, T. Synthesis of nitrogen-doped ordered mesoporous carbons for catalytic dehydrochlorination of 1,2-dichloroethane. Carbon 2014, 80, 610–616.

[3]

Zhao, W.; Sun, M. X.; Zhang, H. Y.; Dong, Y. Z.; Li, X. Y.; Li, W.; Zhang, J. L. Catalytic dehydrochlorination of 1,2-dichloroethane to produce vinyl chloride over N-doped coconut activated carbon. RSC Adv. 2015, 5, 104071–104078.

[4]

Boudewijns, T.; Piccinini, M.; Degraeve, P.; Liebens, A.; De Vos, D. Pathway to vinyl chloride production via dehydrochlorination of 1,2-dichloroethane in ionic liquid media. ACS Catal. 2015, 5, 4043–4047.

[5]

Bai, S. X.; Dai, Q. G.; Chu, X. X.; Wang, X. Y. Dehydrochlorination of 1,2-dichloroethane over Ba-modified Al2O3 catalysts. RSC Adv. 2016, 6, 52564–52574.

[6]

Sun, X.; Qin, Y. C.; Li, Q.; Liu, X.; Liu, Z.; Song, L. J.; Sun, Z. L. Supported structure-controlled graphitic carbon nitride catalyst for dehydrochlorination of 1,2-dichloroethane. Catal. Sci. Technol. 2018, 8, 5334–5343.

[7]

Chen, C.; Shen, Z. B.; Zhu, Y. P.; Wang, F.; Jiang, B.; Qi, H. M. Construction of activated carbon-supported B3N3 doped carbon as metal-free catalyst for dehydrochlorination of 1,2-dichloroethane to produce vinyl chloride. RSC Adv. 2021, 11, 183–191.

[8]
Martin, M.; Richard, B. D. H. Splitting-off of hydrogen halide from halogenated hydrocarbons. U.S. Patent 2,378,859, June 19, 1945.
[9]

Iván, B.; Kennedy, J. P.; Kelen, T.; Tüdõs, F.; Nagy, T. T.; Turcsányi, B. Degradation of PVCs obtained by controlled chemical dehydrochlorination. J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 2177–2188.

[10]

Mochida, I.; Uchino, A.; Fujitsu, H.; Takeshita, K. Catalytic dehydrochlorination of 1,1,2-trichloroethane into 1,1-dichloroethylene over alumina promoted by water. Chem. Lett. 1975, 4, 745–746.

[11]

Brace, N. O. Cyclization during the dehydrohalogenation of perfluoroalkyl-substituted iodoalkylmalonates. Thermal rearrangement of the derived 2-(perfluoroalkyl) methylcyclopropane-1,1-dicarboxylates. J. Org. Chem. 1975, 40, 851–858.

[12]

Milchert, E.; Paździoch, W. Optimization of dehydrochlorination of waste 1,1,2-trichloroethane to vinylidene chloride. Ind. Eng. Chem. Res. 1999, 38, 391–395.

[13]

Lawrence, N. J. Aldehydes and ketones. J. Chem. Soc., Perkin Trans. 1. 1998, 10, 1739–1750.

[14]

Hiroshi, F.; Takeshi, T.; Isao, M. Influences of supporting silica gel on the catalytic activity of B-18 crown ether-KCl complex for the selective dehydrochlorination of 1, 1, 2-trichloroethane. Bull. Chem. Soc. Japan 1985, 58, 1589–1590.

[15]

Mochida, I.; Tsunawaki, T.; Sotowa, C.; Korai, Y.; Higuchi, K. Coke produced in the commercial pyrolysis of ethylene dichloride into vinyl chloride. Ind. Eng. Chem. Res. 1996, 35, 3803–3807.

[16]

Kim, D. I.; Allen, D. T. Catalytic hydroprocessing of chlorinated olefins. Ind. Eng. Chem. Res. 1997, 36, 3019–3026.

[17]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to Sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[18]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[19]
Yang, J. R.; Li, W. H.; Tang, H. T.; Pan, Y. M.; Wang, D. S.; Li, Y. D. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023 , 617, 519–523.
[20]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[21]

Yue, Y. X.; Wang, B. L.; Wang, S. S.; Jin, C. X.; Lu, J. Y.; Fang, Z.; Shao, S. J.; Pan, Z. Y.; Ni, J.; Zhao, J. et al. Boron-doped carbon nanodots dispersed on graphitic carbon as high-performance catalysts for acetylene hydrochlorination. Chem. Commun. 2020, 56, 5174–5177.

[22]

Zhao, J.; Wang, B. L.; Yue, Y. X.; Sheng, G. F.; Lai, H. X.; Wang, S. S.; Yu, L.; Zhang, Q. F.; Feng, F.; Hu, Z. T. et al. Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. J. Catal. 2019, 373, 240–249.

[23]

Yue, Y. X.; Wang, S. S.; Zhou, Q.; Wang, B. L.; Jin, C. X.; Chang, R. Q.; Wan, L. Q.; Pan, Z. Y.; Zhu, Y. H.; Zhao, J.; Li, X. N. Tailoring asymmetric Cu-O-P coupling site by carbothermal shock method for efficient vinyl chloride synthesis over carbon supported Cu catalysts. ACS Catal. 2023, 13, 9777–9791.

[24]

Wang, B. L.; Zhao, J.; Yue, Y. X.; Sheng, G. F.; Lai, H. X.; Rui, J. Y.; He, H. H.; Hu, Z. T.; Feng, F.; Zhang, Q. F. et al. Carbon with surface-enriched nitrogen and sulfur supported Au catalysts for acetylene hydrochlorination. ChemCatChem 2019, 11, 1002–1009.

[25]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[26]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[27]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[28]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[29]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[30]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[31]

Jeong, J. H.; Lee, J. S.; Roh, K. C.; Kim, K. B. Multimodal porous carbon derived from ionic liquids: Correlation between pore sizes and ionic clusters. Nanoscale 2017, 9, 14672–14681.

[32]

Chen, B. L.; Wu, D. L.; Wang, T.; Yuan, F.; Jia, D. Z. Rapid preparation of porous carbon by flame burning carbonization method for supercapacitor. Chem. Eng. J. 2023, 462, 142163.

[33]

Zhang, Z. P.; Sun, J. T.; Dou, M. L.; Ji, J.; Wang, F. Nitrogen and phosphorus codoped mesoporous carbon derived from polypyrrole as superior metal-free electrocatalyst toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 16236–16242.

[34]

Gao, X. F.; Zhu, L.; Yang, F.; Zhang, L.; Xu, W. H.; Zhou, X.; Huang, Y. K.; Song, H. H.; Lin, L. L.; Wen, X. D. et al. Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation. Nat. Commun. 2023, 14, 1478.

[35]

Liu, Z. K.; Yan, B.; Meng, S. Y.; Liu, R.; Lu, W. D.; Sheng, J.; Yi, Y. H.; Lu, A. H. Plasma tuning local environment of hexagonal boron nitride for oxidative dehydrogenation of propane. Angew. Chem., Int. Ed. 2021, 60, 19691–19695.

[36]

Liu, Z.; Liu, J. Q.; Mateti, S.; Zhang, C. M.; Zhang, Y. X.; Chen, L. F.; Wang, J. M.; Wang, H. B.; Doeven, E. H.; Francis, P. S. et al. Boron radicals identified as the source of the unexpected catalysis by boron nitride nanosheets. ACS Nano 2019, 13, 1394–1402.

[37]

Li, J.; Dong, Y.; Zhu, J. Y.; Wang, L. X.; Tian, W. H.; Zhao, J.; Lin, H.; Zhang, S.; Cao, Y. L.; Song, H. H. et al. B, N co-doped carbon nanosheets derived from graphene quantum dots: Improving the pseudocapacitive performance by efficient trapping nitrogen. Appl. Surf. Sci. 2020, 529, 147239.

[38]

Song, X. H.; Li, X.; Zhang, X. Y.; Wu, Y. F.; Ma, C. C.; Huo, P. W.; Yan, Y. S. Fabricating C and O co-doped carbon nitride with intramolecular donor-acceptor systems for efficient photoreduction of CO2 to CO. Appl. Catal. B Environ. 2020, 268, 118736.

[39]

Wang, S. Z.; Wang, J. L. Synergistic effect of PMS activation by Fe0@Fe3O4 anchored on N, S, O co-doped carbon composite for degradation of sulfamethoxazole. Chem. Eng. J. 2022, 427, 131960.

[40]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[41]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[42]

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.

[43]

Doubková, S.; Marek, A. Frustrated Lewis pairs: A real alternative to deuteride/tritide reductions. J. Labelled Compd. Radiopharm. 2019, 62, 729–742.

[44]

McQuilken, A. C.; Dao, Q. M.; Cardenas, A. J. P.; Bertke, J. A.; Grimme, S.; Warren, T. H. A frustrated and confused Lewis pair. Angew. Chem., Int. Ed. 2016, 55, 14335–14339.

[45]

Frenette, B. L.; Rivard, E. Frustrated Lewis pair chelation in the p-block. Chem. —Eur. J. 2023, 29, e202302332.

File
12274_2024_6423_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 November 2023
Revised: 03 December 2023
Accepted: 15 December 2023
Published: 25 January 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The authors acknowledge the funding support from the National Natural Science Foundation of China (Nos. 22202036 and 22302001) and the Jilin Province Scientific, the Technological Planning Project of China (No. 20230101292JC).

Return