Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Mixed-dimensional composite structures using zero-dimensional (0D) quantum dots (QDs) and two-dimensional (2D) transition metal dichalcogenides (TMDs) materials are expected to attract great interest in optoelectronics due to the potential to generate new optical properties. Here, we report on the unique optical characteristics of a devices with mixed dimensional vertically stacked structures based on tungsten diselenide (WSe2)/CdSeS QDs monolayer/molybdenum disulfide (MoS2) (2D/0D/2D). Specifically, it exhibits an ambipolar photoresponse characteristic, with a negative photoresponse observed in the 400–600 nm wavelength range and a positive photoresponse appeared at 700 nm wavelength. It resulted in the high negative responsivity of up to 52.22 mA·W−1 under 400 nm, which is 163 times higher than that of the photodetector without CdSeS QDs. We also demonstrated the negative photoresponse, which could be due to increased carrier collision probability and non-radiative recombination. Device modeling and simulation reveal that Auger recombination among the types of non-radiative recombination is the main cause of negative photocurrent generation. Consequently, we discovered ambipolar photoresponse near a specific wavelength corresponding to the energy of quantum dots. Our study revealed interesting phenomenon in the mixed low-dimensional stacked structure and paved the way to exploit it for the development of innovative photodetection materials as well as for optoelectronic applications.
Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.
Velusamy, D. B.; Kim, R. H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S. H.; Song, G.; Cho, S. M.; Cho, S. H.; Hwang, I. et al. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 2015, 6, 8063.
Zeng, Q. S.; Liu, Z. Novel optoelectronic devices: Transition-metal-dichalcogenide-based 2D heterostructures. Adv. Electron. Mater. 2018, 4, 1700335.
Pospischil, A.; Mueller, T. Optoelectronic devices based on atomically thin transition metal dichalcogenides. Appl. Sci. 2016, 6, 78.
Bao, X. Z.; Ou, Q. D.; Xu, Z. Q.; Zhang, Y. P.; Bao, Q. L.; Zhang, H. Band structure engineering in 2D materials for optoelectronic applications. Adv. Mater. Technol. 2018, 3, 1800072.
Choi, J.; Zhang, H. Y.; Choi, J. H. Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer. ACS Nano 2016, 10, 1671–1680.
Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.
Wang, Q. X.; Zhang, Q.; Luo, X.; Wang, J. Y.; Zhu, R.; Liang, Q. J.; Zhang, L.; Yong, J. Z.; Yu Wong, C. P.; Eda, G. et al. Optoelectronic properties of a van der waals WS2 monolayer/2D perovskite vertical heterostructure. ACS Appl. Mater. Interfaces 2020, 12, 45235–45242.
Jariwala, D.; Davoyan, A. R.; Tagliabue, G.; Sherrott, M. C.; Wong, J.; Atwater, H. A. Near-unity absorption in van der waals semiconductors for ultrathin optoelectronics. Nano Lett. 2016, 16, 5482–5487.
Liao, W. G.; Huang, Y. T.; Wang, H. D.; Zhang, H. Van der Waals heterostructures for optoelectronics: Progress and prospects. Appl. Mater. Today 2019, 16, 435–455.
Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.
Lin, P.; Zhu, L. P.; Li, D.; Xu, L.; Pan, C. F.; Wang, Z. L. Piezo-phototronic effect for enhanced flexible MoS2/WSe2 van der Waals photodiodes. Adv. Funct. Mater. 2018, 28, 1802849.
Sun, M. X.; Fang, Q. Y.; Xie, D.; Sun, Y. L.; Xu, J. L.; Teng, C. J.; Dai, R. X.; Yang, P.; Li, Z. X.; Li, W. W. et al. Novel transfer behaviors in 2D MoS2/WSe2 heterotransistor and its applications in visible-near infrared photodetection. Adv. Electron. Mater. 2017, 3, 1600502.
Lee, C. H.; Lee, G. H.; Van Der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.
Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.
De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262.
Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.
Sun, Y. L.; Xie, D.; Sun, M. X.; Teng, C. J.; Qian, L.; Chen, R. S.; Xiang, L.; Ren, T. L. Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection. Sci. Rep. 2018, 8, 5107.
Moon, B. J.; Lee, K. S.; Shim, J.; Park, S.; Kim, S. H.; Bae, S.; Park, M.; Lee, C. L.; Choi, W. K.; Yi, Y. et al. Enhanced photovoltaic performance of inverted polymer solar cells utilizing versatile chemically functionalized ZnO@graphene quantum dot monolayer. Nano Energy 2016, 20, 221–232.
Park, Y. J.; Lee, K. S.; Lim, G. H.; Seo, H. W.; Kim, S. W.; Kim, M.; Yi, Y.; Lee, H. S.; Son, D. I. Role of CdSe and CdSe@ZnS quantum dots interlayers conjugated in inverted polymer solar cells. Org. Electron. 2020, 82, 105707.
Liu, W. Y.; Lee, J. S.; Talapin, D. V. III-V nanocrystals capped with molecular metal chalcogenide ligands: High electron mobility and ambipolar photoresponse. J. Am. Chem. Soc. 2013, 135, 1349–1357.
Herring, P. K.; Hsu, A. L.; Gabor, N. M.; Shin, Y. C.; Kong, J.; Palacios, T.; Jarillo-Herrero, P. Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple. Nano Lett. 2014, 14, 901–907.
Zhu, J. T.; Wang, H.; Ma, L.; Zou, G. F. Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure. Nano Res. 2021, 14, 3416–3422.
Nguyen, V. T.; Yim, W.; Park, S. J.; Son, B. H.; Kim, Y. C.; Cao, T. T.; Sim, Y.; Moon, Y. J.; Nguyen, V. C.; Seong, M. J. et al. Phototransistors with negative or ambipolar photoresponse based on as-grown heterostructures of single-walled carbon nanotube and MoS2. Adv. Funct. Mater. 2018, 28, 1802572.
Lim, G. H.; Lee, K. S.; Park, Y. J.; Shim, J.; Choi, J. W.; Kim, M.; Jin, Y.; Lim, B.; Yi, Y.; Lee, C. L. et al. Charge transport effect and photovoltaic conversion of two-dimensional CdSeS quantum dot monolayers in inverted polymer solar cells. J. Mater. Chem. C 2019, 7, 11797–11805.
Moon, B. J.; Cho, S.; Lee, K. S.; Bae, S.; Lee, S.; Hwang, J. Y.; Angadi, B.; Yi, Y.; Park, M.; Son, D. I. Enhanced photovoltaic performance of inverted polymer solar cells utilizing multifunctional quantum-dot monolayers. Adv. Energy Mater. 2015, 5, 1401130.
Lee, J. S.; Choi, S. H.; Yun, S. J.; Kim, Y. I.; Boandoh, S.; Park, J. H.; Shin, B. G.; Ko, H.; Lee, S. H.; Kim, Y. M. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain Formation. Science 2018, 362, 817–821.
Shim, J.; Lee, J. S.; Lee, J. H.; Yun, Y. J.; Park, S. K.; Angadi, B.; Son, D. I. Memory effect of vertically stacked hBN/QDs/hBN structures based on quantum-dot monolayers sandwiched between hexagonal boron nitride layer. Compos. B. Eng. 2021, 225, 109307.
Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.
Wang, G.; Glazov, M. M.; Robert, C.; Amand, T.; Marie, X.; Urbaszek, B. Double resonant Raman scattering and valley coherence generation in monolayer WSe2. Phys. Rev. Lett. 2015, 115, 117401.
Yin, J. D.; Li, J. R.; Chen, H.; Wang, J. T.; Yan, P. G.; Liu, M. L.; Liu, W. J.; Lu, W.; Xu, Z. H.; Zhang, W. F. et al. Large-area highly crystalline WSe2 atomic layers for ultrafast pulsed lasers. Opt. Express 2017, 25, 30020–30031.
Varshney, U.; Aggarwal, N.; Gupta, G. Current advances in solar-blind photodetection technology: Using Ga2O3 and AlGaN. J. Mater. Chem. C 2022, 10, 1573–1593.
Müller, J.; Lupton, J. M.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller, H. Monitoring surface charge migration in the spectral dynamics of single CdSe∕CdS nanodot/nanorod heterostructures. Phys. Rev. B 2005, 72, 205339.
Empedocles, S. A.; Neuhauser, R.; Shimizu, K.; Bawendi, M. G. Photoluminescence from single semiconductor nanostructures. 3.0.CO;2-2">Adv. Mater. 1999, 11, 1243–1256.
Biswas, C.; Jeong, H.; Jeong, M. S.; Yu, W. J.; Pribat, D.; Lee, Y. H. Quantum dot-carbon nanotube hybrid phototransistor with an enhanced optical stark effect. Adv. Funct. Mater. 2013, 23, 3653–3660.
Zhao, S.; Wu, J. B.; Xu, Y.; Zhang, X.; Han, Y. D.; Xing, H. Z. CdS/Ag2S/g-C3N4 ternary composites with superior photocatalytic performance for hydrogen evolution under visible light irradiation. Dalton Trans. 2021, 50, 3253–3260.
Li, X. Y.; Zhao, Y. B.; Fan, F. J.; Levina, L.; Liu, M.; Quintero-Bermudez, R.; Gong, X. W.; Quan, L. N.; Fan, J.; Yang, Z. Y. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 2018, 12, 159–164.
Sanchez, O. L.; Ovchinnikov, D.; Misra, S.; Allain, A.; Kis, A. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett. 2016, 16, 5792–5797.