AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mixed-dimensional stacked nanocomposite structures for a specific wavelength-selectable ambipolar photoresponse

Young Jae Park1,2,§Jaeho Shim1,§Joo Song Lee1Kyu Seung Lee1Ji-Yeon Kim1Kang Bok Ko3Sang-Youp Yim4Seongjun Kim2Hoon-Kyu Shin2Donghee Park5Yong Ju Yun6Dong Ick Son1,7( )
Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do 55324, Republic of Korea
National Institute for Nanomaterials Technology, Pohang University of Science and Technology, Gyeongsangbuk-do 37673, Republic of Korea
Department of Semiconductor Science and Technology, Semiconductor Physics Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea
KIST School, Department of Nanomaterials and Nano Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea

§ Young Jae Park and Jaeho Shim contributed equally to this work.

Show Author Information

Graphical Abstract

The unique optical characteristics of a devices with a mixed dimensional vertically stacked structures based on WSe2/CdSeS quantum dots (QDs) monolayer/MoS2 (two-dimensional (2D)/zero-dimensional (0D)/2D). Specifically, it exhibits an ambipolar photoresponse characteristic, with a negative photoresponse observed in the 400–600 nm wavelength range and a positive photoresponse appearing at 700 nm wavelength.

Abstract

Mixed-dimensional composite structures using zero-dimensional (0D) quantum dots (QDs) and two-dimensional (2D) transition metal dichalcogenides (TMDs) materials are expected to attract great interest in optoelectronics due to the potential to generate new optical properties. Here, we report on the unique optical characteristics of a devices with mixed dimensional vertically stacked structures based on tungsten diselenide (WSe2)/CdSeS QDs monolayer/molybdenum disulfide (MoS2) (2D/0D/2D). Specifically, it exhibits an ambipolar photoresponse characteristic, with a negative photoresponse observed in the 400–600 nm wavelength range and a positive photoresponse appeared at 700 nm wavelength. It resulted in the high negative responsivity of up to 52.22 mA·W−1 under 400 nm, which is 163 times higher than that of the photodetector without CdSeS QDs. We also demonstrated the negative photoresponse, which could be due to increased carrier collision probability and non-radiative recombination. Device modeling and simulation reveal that Auger recombination among the types of non-radiative recombination is the main cause of negative photocurrent generation. Consequently, we discovered ambipolar photoresponse near a specific wavelength corresponding to the energy of quantum dots. Our study revealed interesting phenomenon in the mixed low-dimensional stacked structure and paved the way to exploit it for the development of innovative photodetection materials as well as for optoelectronic applications.

References

[1]

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

[2]

Velusamy, D. B.; Kim, R. H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S. H.; Song, G.; Cho, S. M.; Cho, S. H.; Hwang, I. et al. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 2015, 6, 8063.

[3]

Zeng, Q. S.; Liu, Z. Novel optoelectronic devices: Transition-metal-dichalcogenide-based 2D heterostructures. Adv. Electron. Mater. 2018, 4, 1700335.

[4]

Pospischil, A.; Mueller, T. Optoelectronic devices based on atomically thin transition metal dichalcogenides. Appl. Sci. 2016, 6, 78.

[5]

Bao, X. Z.; Ou, Q. D.; Xu, Z. Q.; Zhang, Y. P.; Bao, Q. L.; Zhang, H. Band structure engineering in 2D materials for optoelectronic applications. Adv. Mater. Technol. 2018, 3, 1800072.

[6]

Choi, J.; Zhang, H. Y.; Choi, J. H. Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer. ACS Nano 2016, 10, 1671–1680.

[7]

Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.

[8]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[9]

Wang, Q. X.; Zhang, Q.; Luo, X.; Wang, J. Y.; Zhu, R.; Liang, Q. J.; Zhang, L.; Yong, J. Z.; Yu Wong, C. P.; Eda, G. et al. Optoelectronic properties of a van der waals WS2 monolayer/2D perovskite vertical heterostructure. ACS Appl. Mater. Interfaces 2020, 12, 45235–45242.

[10]

Jariwala, D.; Davoyan, A. R.; Tagliabue, G.; Sherrott, M. C.; Wong, J.; Atwater, H. A. Near-unity absorption in van der waals semiconductors for ultrathin optoelectronics. Nano Lett. 2016, 16, 5482–5487.

[11]

Liao, W. G.; Huang, Y. T.; Wang, H. D.; Zhang, H. Van der Waals heterostructures for optoelectronics: Progress and prospects. Appl. Mater. Today 2019, 16, 435–455.

[12]

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

[13]

Lin, P.; Zhu, L. P.; Li, D.; Xu, L.; Pan, C. F.; Wang, Z. L. Piezo-phototronic effect for enhanced flexible MoS2/WSe2 van der Waals photodiodes. Adv. Funct. Mater. 2018, 28, 1802849.

[14]

Sun, M. X.; Fang, Q. Y.; Xie, D.; Sun, Y. L.; Xu, J. L.; Teng, C. J.; Dai, R. X.; Yang, P.; Li, Z. X.; Li, W. W. et al. Novel transfer behaviors in 2D MoS2/WSe2 heterotransistor and its applications in visible-near infrared photodetection. Adv. Electron. Mater. 2017, 3, 1600502.

[15]

Lee, C. H.; Lee, G. H.; Van Der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

[16]

Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

[17]

De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262.

[18]

Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

[19]

Sun, Y. L.; Xie, D.; Sun, M. X.; Teng, C. J.; Qian, L.; Chen, R. S.; Xiang, L.; Ren, T. L. Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection. Sci. Rep. 2018, 8, 5107.

[20]

Moon, B. J.; Lee, K. S.; Shim, J.; Park, S.; Kim, S. H.; Bae, S.; Park, M.; Lee, C. L.; Choi, W. K.; Yi, Y. et al. Enhanced photovoltaic performance of inverted polymer solar cells utilizing versatile chemically functionalized ZnO@graphene quantum dot monolayer. Nano Energy 2016, 20, 221–232.

[21]

Park, Y. J.; Lee, K. S.; Lim, G. H.; Seo, H. W.; Kim, S. W.; Kim, M.; Yi, Y.; Lee, H. S.; Son, D. I. Role of CdSe and CdSe@ZnS quantum dots interlayers conjugated in inverted polymer solar cells. Org. Electron. 2020, 82, 105707.

[22]

Liu, W. Y.; Lee, J. S.; Talapin, D. V. III-V nanocrystals capped with molecular metal chalcogenide ligands: High electron mobility and ambipolar photoresponse. J. Am. Chem. Soc. 2013, 135, 1349–1357.

[23]

Herring, P. K.; Hsu, A. L.; Gabor, N. M.; Shin, Y. C.; Kong, J.; Palacios, T.; Jarillo-Herrero, P. Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple. Nano Lett. 2014, 14, 901–907.

[24]

Zhu, J. T.; Wang, H.; Ma, L.; Zou, G. F. Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure. Nano Res. 2021, 14, 3416–3422.

[25]

Nguyen, V. T.; Yim, W.; Park, S. J.; Son, B. H.; Kim, Y. C.; Cao, T. T.; Sim, Y.; Moon, Y. J.; Nguyen, V. C.; Seong, M. J. et al. Phototransistors with negative or ambipolar photoresponse based on as-grown heterostructures of single-walled carbon nanotube and MoS2. Adv. Funct. Mater. 2018, 28, 1802572.

[26]

Lim, G. H.; Lee, K. S.; Park, Y. J.; Shim, J.; Choi, J. W.; Kim, M.; Jin, Y.; Lim, B.; Yi, Y.; Lee, C. L. et al. Charge transport effect and photovoltaic conversion of two-dimensional CdSeS quantum dot monolayers in inverted polymer solar cells. J. Mater. Chem. C 2019, 7, 11797–11805.

[27]

Moon, B. J.; Cho, S.; Lee, K. S.; Bae, S.; Lee, S.; Hwang, J. Y.; Angadi, B.; Yi, Y.; Park, M.; Son, D. I. Enhanced photovoltaic performance of inverted polymer solar cells utilizing multifunctional quantum-dot monolayers. Adv. Energy Mater. 2015, 5, 1401130.

[28]

Lee, J. S.; Choi, S. H.; Yun, S. J.; Kim, Y. I.; Boandoh, S.; Park, J. H.; Shin, B. G.; Ko, H.; Lee, S. H.; Kim, Y. M. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain Formation. Science 2018, 362, 817–821.

[29]

Shim, J.; Lee, J. S.; Lee, J. H.; Yun, Y. J.; Park, S. K.; Angadi, B.; Son, D. I. Memory effect of vertically stacked hBN/QDs/hBN structures based on quantum-dot monolayers sandwiched between hexagonal boron nitride layer. Compos. B. Eng. 2021, 225, 109307.

[30]

Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

[31]

Wang, G.; Glazov, M. M.; Robert, C.; Amand, T.; Marie, X.; Urbaszek, B. Double resonant Raman scattering and valley coherence generation in monolayer WSe2. Phys. Rev. Lett. 2015, 115, 117401.

[32]

Yin, J. D.; Li, J. R.; Chen, H.; Wang, J. T.; Yan, P. G.; Liu, M. L.; Liu, W. J.; Lu, W.; Xu, Z. H.; Zhang, W. F. et al. Large-area highly crystalline WSe2 atomic layers for ultrafast pulsed lasers. Opt. Express 2017, 25, 30020–30031.

[33]

Varshney, U.; Aggarwal, N.; Gupta, G. Current advances in solar-blind photodetection technology: Using Ga2O3 and AlGaN. J. Mater. Chem. C 2022, 10, 1573–1593.

[34]

Müller, J.; Lupton, J. M.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller, H. Monitoring surface charge migration in the spectral dynamics of single CdSe∕CdS nanodot/nanorod heterostructures. Phys. Rev. B 2005, 72, 205339.

[35]

Empedocles, S. A.; Neuhauser, R.; Shimizu, K.; Bawendi, M. G. Photoluminescence from single semiconductor nanostructures. 3.0.CO;2-2">Adv. Mater. 1999, 11, 1243–1256.

[36]

Biswas, C.; Jeong, H.; Jeong, M. S.; Yu, W. J.; Pribat, D.; Lee, Y. H. Quantum dot-carbon nanotube hybrid phototransistor with an enhanced optical stark effect. Adv. Funct. Mater. 2013, 23, 3653–3660.

[37]

Zhao, S.; Wu, J. B.; Xu, Y.; Zhang, X.; Han, Y. D.; Xing, H. Z. CdS/Ag2S/g-C3N4 ternary composites with superior photocatalytic performance for hydrogen evolution under visible light irradiation. Dalton Trans. 2021, 50, 3253–3260.

[38]

Li, X. Y.; Zhao, Y. B.; Fan, F. J.; Levina, L.; Liu, M.; Quintero-Bermudez, R.; Gong, X. W.; Quan, L. N.; Fan, J.; Yang, Z. Y. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 2018, 12, 159–164.

[39]

Sanchez, O. L.; Ovchinnikov, D.; Misra, S.; Allain, A.; Kis, A. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett. 2016, 16, 5792–5797.

Nano Research
Pages 5549-5558
Cite this article:
Park YJ, Shim J, Lee JS, et al. Mixed-dimensional stacked nanocomposite structures for a specific wavelength-selectable ambipolar photoresponse. Nano Research, 2024, 17(6): 5549-5558. https://doi.org/10.1007/s12274-024-6422-y
Topics:

813

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 November 2023
Revised: 04 December 2023
Accepted: 16 December 2023
Published: 24 January 2024
© Tsinghua University Press 2024
Return